
DATA FILE HANDLING IN 
C++



What if a FILE?

A file is a stream of bytes stored on some secondary storage devices.



NEED FOR DATA FILES

 Many real life problems requires handling of large amount of 
data.

 Earlier we used arrays to store bulk data.
 The problem with the arrays is that arrays are stored in RAM.
 The data stored in arrays is retained as long as the program is 

running. Once the program is over the data stored in the arrays 
is also lost.

 To store the data permanently we need files.

Files are required to save our data (on a secondary storage device) for 
future use, as RAM is not able to hold our data permanently.



Difference between Files and Arrays( graduating to files ):

DIFFERENCE BETWEEN ARRAYS AND FILES

ARRAYS FILES
Arrays are stored in RAM Files are stored on Hard Disk

Data is stored temporarily Data is stored permanently

Arrays have fixed size File can have variable size

Arrays can not be used to share 
data between programs.

Files can be used to share data between 
programs.



INPUT/OUTPUT IN C++
STREAMS

 The input/output system of C++ handles file I/O 
operations in the same way it handles console I/O 
operations.

 It uses file stream as an interface between programs 
and files.

 A stream is defined as the flow of data.
 Different kinds of stream are used to represent 

different kinds of data flow.
Output stream: The stream which controls the 

flow of data from the program to file is called 
output stream.

 Input stream: The stream which controls the 
flow of data from the file to the program is 
called input stream.

Input Stream

Output Stream

Disk 
File

C++ 
Program

Read 
data

Extract from
input stream

Insert into 
output streamWrite 

data



INPUT/OUTPUT IN C++
CLASSES

Each stream is associated with a particular 
class which contains definitions and 
methods for dealing with that particular 
kind of data 

These include fstream, ifstream and 
ofstream. These classes are defined in the 
header file fstream.h. Therefore it is 
necessary to include this header file while 
writing file programs. 

The classes contained in fstream.h are 
derived from iostream.h. Thus it is not 
necessary to include iostream.h in our 
program, if we are using the header file 
fstream.h in it. 

IOS

IOSTREAM

FSTREAM

ISTREAM
get ()

getline()
read()

>>

OSTREAM
put ()
write()

<<

IFSTREAM
seekg()
tellg()
open()

>>

OFSTREAM
seekp()
tellp()
open()

<<



INPUT/OUTPUT IN C++
CLASSES contd….

The ifstream class contains open() function with 
default input mode and inherits the functions 
get(), getline(), read(), seekg() and tellg().

The ofstream class contains open() function with 
default output mode and inherits functions put(), 
write(), seekp() and tellp() from ostream.

The fstream class contains open() function with 
default input/output mode and inherits all I/O 
functions from iostream.h.



TYPES OF DATA FILES

There are two types of data files in C++: Text files and 
Binary files

 Text files store the information in ASCII characters. Each 
line of text in text files is terminated by a special 
character called EOL. In text files some internal 
translations take place while storing data.

 Binary files store information in binary format. There is 
no EOL character in binary files and no character 
translation takes place in binary files.



DIFFERENCE BETWEEN TEXT FILES AND BINARY FILES

These differ on six main parameters:

TEXT FILES BINARY FILES

Handling of new 
lines

In text files various character translations are 
performed such as “\r+\f”(carriage return-
linefeed combination)is converted into “\n”(new 
line) while reading from a file and vice-versa 
while writing.

In binary files no such translations are 
performed.

Portability Portable: one can easily transfer text file from 
one computer to the other

Non portable: Binary files are 
dependent. If the new computer uses 
a different internal representation for 
values they cannot be transferred.

Storage of 
numbers

In text files when we store numbers they are 
stored as characters eg if we store a decimal no 
42.9876 in a text file it occupies 7 bytes

In a binary file 42.9876 is stored in 4 
bytes



Text Files Binary Files

Readability Are readable and thus can be 
easily edited using any word 
editor.

Not readable

Storage Occupy more space due to 
character conversions

Occupy less space.

Accuracy While reading/writing of 
numbers, some conversion 
errors may occur.

Highly accurate for numbers 
because it stores the exact 
internal representation of 
values.

DIFFERENCE BETWEEN TEXT FILES AND BINARY FILES contd…



OPENING FILES
Opening of files can be achieved in two ways:

 Using Constructor function: This method is useful when we open only one file in a stream. 
To open a file using a constructor fuction we create an object of desired stream and 
initialize that object ith the desired file name. For eg. The statement

ofstream fout(“ABC.TXT”);
will create an onject fout of class ofstream, opens the file ABC.TXT and attaches it to the 
output stream for writing. Similarly the statement

ifstream fin(“ABC.TXT);
will create an object fin of class ifstream, opens the file “ABC.TXT” and attaches it to the input 
stream for reading.

 Using open() function: This method is useful when we want to open multiple files using a 
single stream. For eg. 

ifstream fin;     //creates input stream
fin.open(“ABC.TXT”); // associates ABC.TXT to this stream
fin.close();  // closes the file
fin.open(“XYZ.TXT”); // associates the input stream with file XYZ.TXT



CLOSING FILES

The connections with a file are automatically closed when the input 
and output stream objects expires ie when they go out of scope. 
However we can close the file explicitly by using the close() method:

fin.close();

Closing a file flushes the buffer which means the data remaining in 
the buffer of input/output stream is moved to its appropriate place. 
For example, when an input files connection is closed, the data is 
moved from the input bufferto the program and when an output file 
connection is closed the data is moved from the output buffer to the 
disk file.



FILE MODES

File modes describes the way in which a file is to be used. The most common file 
modes are :

File Modes Exolanation

ios::in Opens file for reading. File pointer is at the beginning of the file

ios::out Opens file for writing. If the file is already created and opened in this 
mode all the previous content gets erased from the file.

ios::app Opens file for adding new records. File pointer is at the end of the 
file. New records can be added only at the end of the file.

ios::ate Opens the file for both reading and writing. File pointer is at the end 
of the file when file is opened in his mode but can be moved to any 
location in the file using file pointer methods.

ios::binary Opens file in binary mode. By default the file is opened n text mode.

Two or more modes can be combined using the bitwise operator |



TEXT FILE FUNCTIONS

 Reading/writing a single character from/to file :

get() – read a single character from text file and store in a buffer.

e.g file.get(ch);

put() - writing a single character in text file.

e.g. file.put(ch);

 Reading/writing a line from/to file:

getline() - read a line of text from text file stored in a buffer.

e.g file.getline(s,80,”\n”);

<<(insertion operator) – write a line to a file.

fin<<s;

 Reading/writing a word from/to file:

char ch[20];
fin.getline(ch,20, ‘ ‘);
We can  use file>>ch for reading and file<<ch writing a word in text file. The 

>> operator does not accept white spaces so it will stop when it encounters a 

space after word and stores that word in ch.



A PROGRAM TO CREATE A TEXT FILE

#include<fstream.h>
void main()
{
ofstream fout(“abc.txt”);
fout<<“ i am creating a new text file\n”;
fout<<“this text file contains alphabets and numbers\n”;
fout.close(); 
}

The above program will create a text file “abc.txt” and store two 
lines in it. You can store as many lines as you want.



#include<fstream.h>
void main()
{
ifstream fin(“abc.txt”);
char ch;
while(!fin.eof())
{
fin.get(ch);
cout<<ch;
}
fin.close(); 
}

A PROGRAM TO READ A TEXT FILE CHRACTER 
BY CHARACTER

The above program will read a text file “abc.txt” one character at a 
time and display it on the screen. 



#include<fstream.h>
void main()
{
ifstream fin(“abc.txt”);
char ch[20];
while(!fin.eof())
{
fin>>ch;
cout<<ch;
}
fin.close(); 
}

A PROGRAM TO READ A TEXT FILE WORD BY 
WORD

The above program will read a text file “abc.txt” one word at a time 
and display it on the screen. 



#include<fstream.h>
void main()
{
ifstream fin(“abc.txt”);
char ch[80];
while(!fin.eof())
{
fin.getline(ch,80,”\n”);
cout<<ch;
}
fin.close(); 
}

A PROGRAM TO READ A TEXT FILE LINE BY 
LINE

The above program will read a text file “abc.txt” one line at a time 
and display it on the screen. 


