Rani Durgawati University, Jabalpur

Four-Year Integrated (Eight Semester)

B.Sc.B.Ed. Course

Course of Studies & Prescribed Books
Approved by Board of Studies in Education

Faculty of Education
B.Sc.B.Ed. Integrated Course
2018 Onwards
STRUCTURE OF THE COURSE

B.Sc. B.Ed.

First Semester

<table>
<thead>
<tr>
<th>Subject/Paper</th>
<th>Paper/Practical</th>
<th>Internal</th>
<th>Total</th>
<th>Pds./Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Part: Foundation Course</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mental Values</td>
<td>40</td>
<td>10</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>Language – Hindi</td>
<td>40</td>
<td>10</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>- English</td>
<td>40</td>
<td>10</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>Elective I + Practical</td>
<td>60 + 25</td>
<td>15</td>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>Elective II + Practical</td>
<td>60 + 25</td>
<td>15</td>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>Elective III + Practical</td>
<td>60 + 25</td>
<td>15</td>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>375</td>
<td>75</td>
<td>450</td>
<td></td>
</tr>
<tr>
<td>B.Ed. Part</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human Development in Socio-cultural Context</td>
<td>40</td>
<td>10</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>School Education in India: Historical Perspective</td>
<td>40</td>
<td>10</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>Health, Physical Education & Yoga</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work Education</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grand Total</td>
<td>455</td>
<td>145</td>
<td>600</td>
<td></td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Subject/Paper</th>
<th>Paper</th>
<th>Internal</th>
<th>Total</th>
<th>Pds./week</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Part: Foundation Course</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic of Computer</td>
<td>40</td>
<td>10</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>Language – Hindi</td>
<td>40</td>
<td>10</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>English</td>
<td>40</td>
<td>10</td>
<td>50</td>
<td>3</td>
</tr>
</tbody>
</table>

Signatures
Third Semester

<table>
<thead>
<tr>
<th>Subject/Paper</th>
<th>Paper</th>
<th>Intern.</th>
<th>Total</th>
<th>Pds./week</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSc. Part: Foundation Course</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comp. & ICT in Education</td>
<td>40</td>
<td>10</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>Language – Hindi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- English</td>
<td>40</td>
<td>10</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>Elective I + Practical</td>
<td>60+25</td>
<td>15</td>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>Elective II + Practical</td>
<td>60+25</td>
<td>15</td>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>Elective III + Practical</td>
<td>60+25</td>
<td>15</td>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>375</td>
<td>75</td>
<td>450</td>
<td></td>
</tr>
<tr>
<td>R.Ed. Part</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reading & Reflection on text</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curriculum Development</td>
<td>40</td>
<td>10</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>Arts and Aesthetics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Community Living</td>
<td></td>
<td></td>
<td></td>
<td>1 week</td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
<td>110</td>
<td>150</td>
<td></td>
</tr>
</tbody>
</table>
Fourth Semester

<table>
<thead>
<tr>
<th>Subject/Paper</th>
<th>Paper</th>
<th>Intern.</th>
<th>Total</th>
<th>Pds./week</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Part: Foundation Course</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comp. & ICT in Education</td>
<td>40</td>
<td>10</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>Language – Hindi</td>
<td>40</td>
<td>10</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>English</td>
<td>40</td>
<td>10</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>Environmental Education</td>
<td>40</td>
<td>10</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>Elective I + Practical</td>
<td>60+25</td>
<td>15+25</td>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>Elective II + Practical</td>
<td>50+25</td>
<td>15+25</td>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>Elective III + Practical</td>
<td>60+25</td>
<td>15+25</td>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>415</td>
<td>85</td>
<td>500</td>
<td></td>
</tr>
</tbody>
</table>

B.Ed. Part				
Inclusive Education	40	10	50	3
Assessment for learning	40	10	50	3
Total	80	20	100	

| **Grand Total** | 495 | 105 | 600 | |

Fifth Semester

<table>
<thead>
<tr>
<th>Subject/Paper</th>
<th>Paper</th>
<th>Intern.</th>
<th>Total</th>
<th>Pds./week</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Part:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foundation Course</td>
<td>40</td>
<td>10</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>Entrepreneurship Dev.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective I + Practical/m</td>
<td>60+25</td>
<td>15</td>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>Elective II + Practical/m</td>
<td>60+25</td>
<td>15</td>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>Elective III + Practical/m</td>
<td>60+25</td>
<td>15</td>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>295</td>
<td>55</td>
<td>350</td>
<td></td>
</tr>
</tbody>
</table>

| B.Ed. Part | | | | |

Signed: [Signature]

Signed: [Signature]

Signed: [Signature]

Scanned by CamScanner
<table>
<thead>
<tr>
<th>Subject/Paper</th>
<th>Paper</th>
<th>Intern.</th>
<th>Total</th>
<th>Pds./week</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Part: Foundation Course</td>
<td>60+25</td>
<td>15</td>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>Entrepreneurship Development</td>
<td>40</td>
<td>10</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>Elective I + Practical</td>
<td>60+25</td>
<td>15</td>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>Elective II + Practical</td>
<td>60+25</td>
<td>15</td>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>Elective III + Practical</td>
<td>60+25</td>
<td>15</td>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>295</td>
<td>55</td>
<td>350</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subject/Paper</th>
<th>Paper</th>
<th>Intern.</th>
<th>Total</th>
<th>Pds./week</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.C.- I: Physical Science</td>
<td>60</td>
<td>15</td>
<td>75</td>
<td>5</td>
</tr>
<tr>
<td>P.C.-II: Bio Science/Maths</td>
<td>60</td>
<td>15</td>
<td>75</td>
<td>5</td>
</tr>
<tr>
<td>Gender Issues & Peace Education</td>
<td>40</td>
<td>10</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>Schooling, Socialization & Identity</td>
<td>40</td>
<td>10</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>200</td>
<td>50</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Grand Total</td>
<td>495</td>
<td>105</td>
<td>600</td>
<td></td>
</tr>
</tbody>
</table>

Seventh Semester

<table>
<thead>
<tr>
<th>Subject/Paper</th>
<th>Internal/External</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Ed. Part</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Pre-internship</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internship (100+100)</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>External Final Teaching (100+100)</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Post-internship</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Subject/Paper</td>
<td>Paper</td>
<td>Intern.</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>Action Research (25+25)</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Concerns of Education coming from the field:</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>A Report</td>
<td>Grand</td>
<td>600</td>
</tr>
<tr>
<td>Eighth Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.Sc. Part:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foundation Course</td>
<td>40</td>
<td>10</td>
</tr>
<tr>
<td>Environmental Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective I + Practicum + Pro.</td>
<td>70+50</td>
<td>30</td>
</tr>
<tr>
<td>Elective II + Practicum + Pro.</td>
<td>70+50</td>
<td>30</td>
</tr>
<tr>
<td>Elective III + Practicum + Pro.</td>
<td>70+50</td>
<td>30</td>
</tr>
<tr>
<td>Total</td>
<td>400</td>
<td>100</td>
</tr>
<tr>
<td>B.Ed. Part</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vision of Indian Education : Issues and Concerns</td>
<td>40</td>
<td>10</td>
</tr>
<tr>
<td>School Management & Leadership</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td>Grand Total</td>
<td>480</td>
<td>120</td>
</tr>
</tbody>
</table>
Bachelor of Science and Bachelor of Education
Rani Durgawati University

COURSE OF STUDIES
For
Four Year Integrated
B.Sc. B.Ed. (Eight Semesters) Course

FIRST SEMESTER

<table>
<thead>
<tr>
<th>Subject/Paper</th>
<th>Paper/Practical</th>
<th>Internal</th>
<th>Total</th>
<th>Pds./Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Part: Foundation Course</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moral Values</td>
<td>40</td>
<td>10</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>Language – Hindi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- English</td>
<td>40</td>
<td>10</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>Elective I + Practical</td>
<td>60+25</td>
<td>15</td>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>Elective II + Practical</td>
<td>60+25</td>
<td>15</td>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>Elective III + Practical</td>
<td>60+25</td>
<td>15</td>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>375</td>
<td>75</td>
<td>450</td>
<td></td>
</tr>
<tr>
<td>B.Ed. Part</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human Development in Socio-cultural Context</td>
<td>40</td>
<td>10</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>School Education in India:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Historical Perspective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health, Physical Education & Yoga</td>
<td>-</td>
<td>25</td>
<td>25</td>
<td>2</td>
</tr>
<tr>
<td>Work Education</td>
<td>-</td>
<td>25</td>
<td>25</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>80</td>
<td>70</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Grand Total</td>
<td>455</td>
<td>145</td>
<td>600</td>
<td></td>
</tr>
</tbody>
</table>

Scanned by CamScanner
- Elective 1 – Physics/Botany.
- Elective 2 – Chemistry.
- Elective 3 – Zoology/Mathematics

(All Electives will have one theory paper and external practical examination except Mathematics where there will be two theory papers and practicum which will be valued internally)

<table>
<thead>
<tr>
<th>Semester Name</th>
<th>Paper</th>
<th>Marks</th>
<th>Paper Code</th>
<th>Name of Papers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Paper Theory-I</td>
<td>30</td>
<td>M-1.1</td>
<td>Algebra, Trigonometry And Vector Analysis</td>
</tr>
<tr>
<td></td>
<td>Paper Theory—II</td>
<td>30</td>
<td>M-1.2</td>
<td>Calculus And Geometry</td>
</tr>
<tr>
<td></td>
<td>Internal Test</td>
<td>15</td>
<td></td>
<td>Related To Above Papers</td>
</tr>
<tr>
<td></td>
<td>Practicum</td>
<td>25</td>
<td></td>
<td>Related To Above Papers</td>
</tr>
</tbody>
</table>

Work Education: Electricity and Electronics/Agriculture

Foundation Course : Moral Values

आधार पाठ्यक्रम : मौलिक मूल्य

Contact Periods/week: 03

Internal: 10

Moral Values (मौलिक मूल्य)

इकाई 1.
1. मौलिक मूल्य परिचय एवं वर्गीकरण – क्र. शरि पव
2. आचरण की समयावर – सरदार पुर्ण शिख

इकाई 2.
1. पुरुष की कसमा – क्र. भव्य तिनम
2. शिक्षणी व्यवस्था – स्थानी विद्वानन्द

इकाई 3.
1. धर्म और राज्यवाद – महात्मा अरविंद
2. अम्ल दीवी भव – स्थानी बबानंद

इकाई 4.
1. अंशकर्म और मौलिक जीवन – क्र. सत्यकाली संग्रहालय
2. सादृशी – महात्मा गांधी

इकाई 5.
1. मात्र से मुक्ति – जे मूल्य मूल्य
2. साथ के साथ मेरे प्रयोग - महानाम शास्त्री की प्रारंभिक का संक्षिप्त विश्लेषण परिणत \(\text{(शर्तों)} \)

Foundation Course: Language - Hindi

आधार पाठ्यक्रम: हिंदी भाषा

प्रारंभ - 1

Contact Periods/week: 03

Internal: 10

<table>
<thead>
<tr>
<th>प्रकार 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ग्रंथ संस्करण (रत्नम)</td>
</tr>
<tr>
<td>2. वाक्य का अर्थ देखा। (रत्नम)</td>
</tr>
<tr>
<td>3. तत्त्व (रत्नम)</td>
</tr>
<tr>
<td>4. र्गुण के होल (रत्नम स्थल)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>प्रकार 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. भाषा विश्लेषण (स्थली)</td>
</tr>
<tr>
<td>2. वाक्य का अर्थ देखा। (स्थली)</td>
</tr>
<tr>
<td>3. तत्त्व (स्थली)</td>
</tr>
<tr>
<td>4. र्गुण के होल (रत्नम स्थल)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>प्रकार 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. काहिरा वाक्य (रत्नम)</td>
</tr>
<tr>
<td>2. वाक्य का अर्थ देखा। (रत्नम)</td>
</tr>
<tr>
<td>3. तत्त्व (रत्नम)</td>
</tr>
<tr>
<td>4. र्गुण के होल (रत्नम स्थल)</td>
</tr>
</tbody>
</table>

(प्रारंभिक एवं संग्रहालय पाठ्यक्रमों में आधारित विश्लेषण होगी। आधारित पाठ्यक्रम के लिए यह अंक निर्धारित है।)

Signatures

[Signatures]

Scanned by CamScanner
Foundation Course: Language English
Paper – 1

Contact Periods/week: 03
Internal Marks: 10
External Marks: 40

Distribution of Marks:
1. Four critical questions are to be set from unit I. Two questions are to be attempted. Each question will carry 5 marks. (5x2 = 10 marks).
2. Students are required to write a paragraph on a given topic in about 100-125 words. (4x1=4 Marks)
3. Students are required to attempt five questions based on the given unseen passage. Each question will carry marks. (2x5=10 marks)
4. Students are required to attempt six questions on vocabulary. Each question will carry one mark. (1x6=6 marks)
5. Students are required to attempt 10 questions on Grammar. Each question will carry one mark. (1x10=10 marks)

UNIT: I
John Keats- Ode to a Nightingale, Rabindranath Tagore- Where the mind is without fear.

UNIT: II
Paragraph Writing

UNIT: III
Comprehension of an unseen passage

UNIT: IV
Vocabulary: Synonyms, Antonyms, Homophones, Homonyms.

UNIT: V
Grammar & Usage: Noun, pronoun, verbs, adjective, adverbs, conjunctions, preposition, articles.
Elective I – Physics

Paper I: Elements of Mathematical Physics, Mechanics & Relativity

Contact Periods/week: 05 + 4 Practical

Maximum Marks – 60
Min. Pass Marks – 20
Internal – 15 (Theory 10 & Practical 5)
Practical – 25 (External)

Note: At least one question will be set from each unit. 20% of the maximum marks will form
simple numerical problems and another 20% would be for objective questions with a provision to
provide reasoning. All Questions will have 100% Internal Choice.

Objectives

After completion of this course the students will be able to

1. Acquaint themselves with different mathematical techniques and concepts useful in study of
 physics
2. Differentiate between scalar and vector fields
3. Explain the physical significance of gradient of scalar field and divergence and curl of vector fields
4. Understand the solutions of differential equations of two and three variables and relate those to
 applications in physics
5. Solve problems on applications of Newton’s laws of motion the solution of a single particle under
 central force field and to a system of particles
6. Understand Kepler’s laws of Planetary Motion and generalize it to satellites
7. Solve problems of rigid and deformable bodies under gravitational, tensile and compressible force
8. Understand the concept of surface tension and viscosity
9. Understand the phenomena of relativity

Unit – 1: Mathematical Background

Concept of field; gradient of a scalar field and its geometrical interpretations; divergence and curl of a
vector field; line, surface and volume integrals; flux of a vector field; Gauss divergence theorem; Green’s
theorem and Stokes theorem.

Unit – 2: Mechanics

Motion in a uniform field; components of velocity and acceleration in different coordinate systems
(Cartesian and Polar only); uniformly rotating frame; centripetal acceleration; pseudo forces; Coriolis
force and its applications; Foucault pendulum.
Motion under central force; Kepler's law; gravitational law and field; potential due to a spherical body; Gauss and Poisson equations for gravitational self-energy.

Unit-3: Mechanics of Rigid Bodies

System of particles: constraints, degree of freedom; centre of mass; centre of mass and laboratory coordinates, equation of motion; conservation of linear and angular momentum; conservation of energy; rocket propulsion; elastic and inelastic collisions.

Rigid body motion; rotational motion; moments of inertia; calculation of moment of inertia of some regular bodies (rod, lamina, disc and sphere); principal moments and axes; gyroscope.

Unit-4: Properties of Matter

Elasticity; Elasticity; small deformations; Hooke's law; elastic constants for an isotropic solid; bending moments; bending of beams; beams supported at both the ends, cantilever, torsion of a cylinder and shear forces; Poisson's ratio; relation between different elastic moduli; elastic fatigue.

Surface Tension; Surface Tension, Angle of Contact, Capillary Rise method; Energy required to raise a liquid in capillary tube; Factors affecting Surface Tension; Applications of surface tension.

Viscosity and fluid mechanics: Concept of Viscous Forces and Viscosity; Steady and Turbulent flow; Reynolds number; Equation of Continuity; Eulerian Equation; Bernoulli's Principle; Signus effect; Stokes law.

Unit-5: Relativity

Reference systems; inertial frames; Galilean Invariance and conservation laws. Propagation of light.

Michelson-Morley experiment; search for ether; Minkowski diagram, Postulates of Special Theory of Relativity; Lorentz Transformations; Lorentz contraction; Time dilation; velocity addition theorem, variation of mass with velocity; mass energy equivalence, particle with zero rest mass; space-time diagram, invariance of laws of physics.

Physics Practical List

1. Acceleration due to gravity ‘g’ by compound pendulum.
2. Moment of Inertia of ‘Fly wheel’.
3. Modulus of rigidity by Maxwell’s needle.
4. Young’s modulus by Scarle’s Apparatus.
5. Young’s modulus by Scarle’s method.
6. Modulus of rigidity by Torsion pendulum (Dynamical Method).
7. Moment of Inertia of irregular body by torsional pendulum.
8. To determine Young's modulus of the material of beam by the method of bending (using a spherometer).
10. Surface tension of water by capillary rise method.
11. To determine the Poisson's ratio for rubber.

Suggested Readings:
- The Mathematics of waves and vibrations, R.K Ghosh, Macmillan
- Introduction to Special Relativity, Robert Resnik, John Wiley & sons (Asia) Pvt. Ltd
- Introduction to Classical Mechanics, David Morin, Cambridge

Elective I – Botany

Paper I: Diversity of Microbes and Cryptogams

Contact Periods/week: 05 + 4 Practical

Maximum Marks – 60
Min. Pass Marks – 20
Internal – 15 (Theory 10 & Practical 5)
Practical – 25 (External)

Note: Two questions will be set from each unit and students are required to attempt one question from each unit.

Objective: To gain understanding of classification and structural and functional organization of viruses, bacteria, algae, fungi, bryophytes and Pteridophytes.

Unit I
Viruses: Discovery, structure, classification reproduction and diseases caused.
Bacteria: Structure, classification, nutrition, reproduction and economic importance and a general account of cyanobacteria and mycoplasmas.

Unit II
Algae: General characters, classification and economic importance. Important features in life history of Chlorophyta : Volvox, Oedogonium, Coleochete
Xanthophyta : Vaucheria

13
Phaeophyta: Ectocarpus, Sargassum

Rhodophyta: Polysiphonia

Unit III

Fungi: General characters, classification and economic importance. Important features in life history of

Mastigomycotina: Pythium, Phytophthora

Zygomycotina: Mucor

Ascomycotina: Saccharomyces, Eurotium, Peziza

Basidiomycotina: Puccinia, Agaricus

Deuteromycotina: Cercospor, Colletotrichum. General account of Lichens

Unit IV

Bryophyta: General characters, outline classification of Bryophyta. Structure and life history of

Hepaticopsida: Marchantia

Anthocerotopsida: Anthoceros

Bryopsida: Funaria

Unit V

Pteridophyta: General characteristics and outline classification. Important characteristics of Psilopsida,

Lycopsida, Sphenopsida and Pteropsida. Structure and reproduction in Rhynia,

Lycopodium, Selaginella, Equisetum, Pteris and Marsilea. Stelar system in pteridophytes.

Practical

Objectives:

- to develop skills of staining of prokaryotes and cryptogamus plant to impart skills of temporary and permanent slide preparations

(i) To enhance ability to identify the of prokaryotes and cryptogamus plant

(ii) To familiarize the students with diseases and their causative agents.

Microbes and Bryophytes

1. Study of the genera included under algae and fungi.

2. Study of morphology, reproductive structures and anatomy of the examples cited in theory under Bryophytes and Pteridophyta

3. Observation of disease symptoms in hosts infected by fungi, viruses and mycoplasma.

Section cutting of diseased material and identification of the pathogens as per the theory syllabus.

[Signature]

Scanned by CamScanner
5. Study of crustose, foliose and other types of lichen thalli.

Scheme of Practical Examination
1. Microscopic preparation and identification (Algae/Fungi) (4)
2. Identification of diseased specimen and its anatomical preparation. (4)
3. Section cutting and staining (Bryophytes) (4)
4. Section cutting and staining (Pteridophytes) (4)
5. Comment on the spots (1-5) (5)
6. Practical Record/Sessional (4)
7. Internal evaluation (5)

Suggested Readings
13. Perkier N.S. The Pteridophytes

P.S. Prabhakar
Elective II – Chemistry

Paper I

Contact Periods/week: 05 + 4 Practical

Maximum Marks – 60

Min. Pass Marks – 20

Internal – 15 (Theory 10 & Practical 5)

Practical – 25 (External)

Note: Two questions will be set from each Unit and the candidates will be required to attempt one;

Objectives

After the end of 1st semester the students should be able to:

(i) Acquire the background of mathematical knowledge needed for better understanding of chemical principles and derivations and also to apply in solving problems.

(ii) Illustrate how a scientific model can be constructed based on the experimental observations of the behaviours of gases and to explain the properties in terms of microscopic organization.

(iii) Explain the properties of liquid state using inter- molecular forces and to differentiate the colloidal state from true solutions in terms of size of the particles and to relate this attribute with their properties with the number of particles to the colligative properties.

(iv) Appreciate the importance of phenomena of colloidal chemistry in daily life.

(v) Explain the importance of quantum chemistry in the developing the model of the atom.

(vi) Acquire competency to predict the patterns in the properties exhibited by the elements.

(vii) Acquire the knowledge of correlating the properties of matter in the solid state to the structure.

(viii) Explain the macroscopic behaviour in terms of microscopic properties.

(ix) Predict the structure of molecules by studying certain physical properties.
Instructional Strategy:

The teacher in addition to the lecture method may also use assignment-cum-discussion mode for transaction of such topics which the learner has already learnt in the higher secondary stage. The use of ICT in transaction of solid state may also be adopted by the teacher. In describing the shape of molecules and the interplay of Intermolecular forces as they affect the properties of the substances, the teacher may explore the possibility of the use of Ausubel’s advance organizer model.

Unit-I Mathematical Concepts

Logarithmic relations, curve sketching, linear graphs and calculation of slopes, differentiation of functions like kx, ex, xn, sin x, log x; maxima, partial differentiation and reciprocity relations, Integration of some useful/relevant functions; permutations and combinations, Factorials, Probability.

Gaseous States Postulates of kinetic theory of gases, deviation from ideal behavior, Van der Waals equation of state.

Critical Phenomena: PV isotherms of real gases, continuity of states, the isotherms of van der Waals equation, relationship between critical constants and van der Walls constants, the law of corresponding states, reduced equation of state.

Molecular velocities: Root mean square, average and most probable velocities. Qualitative discussion of the Maxwell’s distribution of molecular velocities, collision number, mean free path and collision diameter. Liquefaction o. gases (based on Joule-Thomson effect).

Liquid State & Colloids

Intermolecular forces, structure of liquids (a qualitative description).

Structural differences between solids, liquids and gases.

Liquid Crystal: Difference between liquid crystal, solid and liquid. Classification, structure of nematic and cholesteric phases. Thermography and seven segment cell. Colloids- classification & properties of sols (optical & electrical), emulsions & gels.

Unit-II Atomic Structure

Idea of de Broglie matter waves, Heisenberg uncertainty principle, atomic orbitals, Schrodinger wave equation, significance of and, quantum numbers, radial and angular wave functions and probability distribution curves, shapes of
s, p, d orbitals. Aufbau and Pauli exclusion principles, Hund’s multiplicity rule. Electronic configurations of the elements, effective nuclear charge.

Periodic Properties

Atomic and ionic radii, ionization energy, electron affinity and electronegativity-definition, methods of determination or evaluation, trends in periodic table and applications in predicting and explaining the chemical behaviour.

Unit-III

Solid State

Unit-IV

Chemical Bonding

Convalent Bond-Valence bond theory and its limitations, directional characteristics of covalent bond, various types of hybridization and shapes of simple inorganic molecules and ions. Valence shell electron pair repulsion (VSEPR) theory to NH₃, H₂O⁺, SF₄, CIF₃, ICl₂⁻ and H₂O. MO theory, homonuclear and heteronuclear (CO and NO) diatomic molecules, multicenter bonding in electron deficient molecules, bond strength and bond energy, percentage ionic character from dipole moment and electronegativity difference. Weak Interactions-Hydrogen bonding, van der Waals forces.

Unit-V

Physical Properties and Molecular Structure: Optical activity, polarization (Clausius-Mossotti equation), orientation of dipoles in an electric field, dipole moment, induced dipole moment, measurement of dipole moment temperature method and refractivity method, dipole moment and structure of molecules, magnetic properties-paramagnetism, diamagnetism and ferromagnetism.
(B) Solutions, Dilute Solutions and Colligative Properties: Ideal and non-ideal solutions, methods of expressing concentrations of solutions, activity & activity coefficient. Dilute solutions, colligative properties. Raoult’s law, relative lowering of vapour pressure, molecular weight determination. Osmosis, law of osmotic pressure and its measurement, determination of molecular weight from osmotic pressure, elevation of boiling point and depression of freezing point. Thermodynamic derivation of relation between molecular weight and elevation in boiling point and depression in freezing point. Experimental methods for determining various colligative properties. Abnormal molar mass, degree of dissociation and association of solute.

Suggested Readings:
3. Castellan, G.W., Physical Chemistry, Narosa Publishing House
5. Chandra, Manas, Chemical Bonding, TMH Publication
7. Puri, Sharma & Pathania, Physical Chemistry, Shoban Lal Nagina Chand & Company
8. Rakshit, P.C., Physical Chemistry, New Age International
9. Lee, J.D., Inorganic Chemistry, ELBS

PRACTICALS
1. Analysis of Inorganic mixture containing two cations and two anions including typical combinations, anions: CO₃²⁻, CH₃COO⁻, NO₂⁻, SO₃²⁻, S₂⁻, Cl⁻, Br⁻, I⁻, NO₃⁻, SO₄²⁻. Cations: NH₄⁺, Ag⁺, Pb₂⁺, Hg₂⁺, Cu²⁺, Hg²⁺, Ba²⁺, Cd²⁺, Zn²⁺, Sn²⁺, Sn⁴⁺, Fe³⁺, Cr³⁺, Al³⁺, CO₂⁺, Ni²⁺, Zn²⁺, Mn²⁺, Ba²⁺, Ca²⁺, Sr²⁺, Mg²⁺. Insoluble and interfering ions are to be excluded.
2. Titrimetric Methods
(a) Mixture of Na₂CO₃ and NaHCO₃ with HCl
(b) Estimation of ferrous and ferric by dichromate method.
(c) Estimation of copper using thiosulphate.
3. Physical Chemistry
(a) Determination of surface tension of given liquid using stalgmometer.
(b) Determination of viscosity coefficient of amyl alcohol in water at different concentrations and to calculate excess viscosity of these solutions.
(c) Determination of refractive indices of given set of liquids and calculation of their molar refractions.

Scheme of Examination:
Experiments
(1) Mixture analysis - 6
(2) Titration - 4
(3) Physical experiment - 5
Internal assessment - 5
Viva - 5

Elective III – Zoology

Paper I: NONCHORDATA, PROTOCHORDATA AND HEMICHORDATA

Contact Periods/week: 05 + 4 Practical

Maximum Marks – 60
Mtn. Pts. Marks – 20
Internal – 15 (Theory 10 & Practical 5)
Practical – 25 (External)

Objective - To gain knowledge of classification of Nonchordates and Protochordates, their structure organization and reproductive animals.

Unit-1
1. Classification of lower invertebrates.
2. Classification of higher invertebrates.
3. Protozoa- type study of Plasmodium.
5. Porifera - Type study of Sycam.

Unit-2
1. Coelenterata - Type study of Obelia.
2. Polymorphism in coelenterates.
3. Coral and coral Reefs.
4. Helminthes - Type study of Liver Fluke.

Unit-3.
1. Annelida – Type study of Earthworm.
2. Metamerism & Trochophore Larva of Nereis.
3. Arthropoda – Type study of Prawn.
4. Sting apparatus of Honey Bees.
5. Mouth parts of Arthropods (biting, sucking, chewing and lapping).

Unit-4
1. Mollusca – Type study of Pila.
2. Larval Form of Mollusca.
3. Echinodermata – Type study of Star Fish.
4. Ambulacral system in Echinoderms.

Unit-5
1. Classification & affinities of Protochordata (Urochordates & Cephalochordates).
2. Urochordata – Type study of Herdmania (Excluding development).
3. Cephalochordata – Classification & affinities.
4. Type study of Balanoglossus.

PRACTICAL
Objective – To develop the skill of identification, staining and study of life cycle of various Protozoan & Helminthic parasites.

1. Study of museum specimens, slides relevant to the type study in theory, from Protozoa upto Hemichordata.
2. Mouth parts of Cockroach.
3. Ctenidium and osphradium of Pila.
5. Sting apparatus of Honey Bees.
7. Radula of Pila.
8. Study of various Protozoa in pond water.
9. Study of life cycle of various Protozoan & Helminthic parasites (as mentioned in theory syllabus) through charts & models.

SCHEME OF PRACTICAL EXAMINATION

1. Spotting - 10
2. Mounting - 05
3. Study of Protozoan/Life cycle of Parasites - 03
4. Practical Records - 03
5. Viva-voce - 04

Total - 25 Marks

Referred books :-

1. Textbook Of Zoology Vol I (Invertebrate) Vol II (Vertebrate)-Parker & Haswell
2. Animal Biology (Vol I & Vol II) -Adhikari, Ganguly & Sinha
3. Textbook of Invertebrates-R.L Kotpal
4. Textbook of Vertebrates- R.L Kotpal
5. Practical Zoology Invertebrates & Vertebrates -S.S.Lal
6. Practical Zoology of Chordates and Non-chordates-P.S. Verma

Elective III – Mathematics

Contact Periods/week: 05 + 4 Practicum

Maximum Marks – 30+30=60
Min. Pass Marks – 20
Internal – 15 (Theory 10 & Practicum: 5);
Practicum – 25 (Internal)

Paper M - 1.1: ALGEBRA, TRIGONOMETRY AND VECTOR ANALYSIS

NOTE : Two questions will be set from each unit with Internal choice

Objectives:

- To develop understanding of matrices, operations in Matrices and solving equations
- To develop understanding of trigonometric functions and summation of series
- To develop understanding of basic concepts of product of scalar and vector product of three vectors
- To develop understanding of vector differentiation including curl, gradient and Divergence

Scanned by CamScanner

Unit - II Relations between the roots and coefficients of general polynomial equation in one unknown. Transformation of equations. Descart's rule of signs. Solution of cubic equations (cardano method), Biquadratic equations.

Unit - III Demoivre's theorem and its applications. Direct and Inverse circular and Hyperbolic functions.

Unit - IV Logarithm of a complex quantity, Expansion of trigonometrical functions. Gregory's series, summation of series

Unit - V Scalar and vector product of three vectors, Product of four vectors, Reciprocal Vectors. Vector differentiation, Gradient, divergence and curl.

Content as in:
1. H.S. Hall and S.R. Knight : Higher Algebra H.M. Publication
3. B.R. Thakur, Nigam, Sinha, Saran Vector Analysis
4. Manglik and Seth : Vector Calculus

Paper M - 1.2: CALCULUS AND GEOMETRY

NOTE: Two questions will be set from each unit with internal choice

Objectives:
- To develop understanding of fundamentals of Differential and Integral Calculus
- To make them familiar with the mechanism of deriving equations of surfaces in 2 and 3 dimensions.

Unit - II Successive differentiation. Leibnitz’s theorem. Maclaurin and Taylor series expansions.

Unit - IV Quadrature. Rectification. Volumes and surfaces of solids of revolution.
Unit - V The straight line and the plane, sphere, cone and cylinder.

Content as in:
2. R.J.T. Bell : Elementary Treatise on Coordinate Geometry of 3 Dimension Morilin
3. S.L. Loney : Elements of Coordinate Geometry

M - 1.3 Mathematics Practicum

List of Activities:
 • Activity oriented problem solving / Experiments using Mathematical software or computer programming language based on the content studied in semester 1 Mathematics papers M-1.1 and M-1.2.
 • Mathematics seminar.

Education Component:

Human Development in Socio-cultural Context

Contact Periods/week: 03

Maximum Marks: 40
Min. Pass Marks: 13
Internal: 10

Objectives:
 • To develop a contemporary understanding of human development: its meanings, processes and perspectives in socio-cultural context.
To acquire theoretical perspectives and develop an understanding of dimensions of human development with special reference to adolescent learners.

To develop an understanding about the impact/influence of socio-cultural context in shaping adolescent development.

To make them cognizant of specific issues of adolescent behavior in schools and the critical role in dealing with children of diverse abilities.

Course Content:

Unit-I: Human Development and the Contexts
- Human development: Meaning, Nature and Dimensions
- Role of Heredity and Environment in Development
- Socio-cultural Contexts: Meaning, Nature and its Influences on Human Development: Culture, Caste, Class, Religion and Gender - their bearing on development
- Family: Child rearing practices
- School: School Culture, Climate, School Ethos, Teacher Values and Peer groups

Unit-II: Socio-cultural aspects of personality Development
- Cognitive Development (Piaget, Vygotsky & Bruner)
- Psycho-Social Development (Erikson)
- Moral Development (Piaget & Kohlberg)
- Character Development
- Culture and Personality

Unit-III: Understanding Adolescents
- Nature of Adolescence: stage of development, Socio-cultural context
- Characteristics and concerns of Adolescents
 - Biological: Physical, Sexual, Emotional
 - Cognitive: Abstract Thinking, Meta-cognition
 - Psychological: Identity, Individuation, and Sense of Independence
 - Social: Adolescents expectation, Social expectation Parental expectation, Skepticism, Peer culture, Role model

- Challenges and opportunities during adolescence: Role of Guidance and Counseling

Unit-IV: Socio-cultural Context Shaping Human Development
- Nature of Socio-culture and Environment.
- Physical Environment
Influence of Educational Technology

Media Exposures

Dealing with learners from varied socio-cultural context and creating culturally compatible classroom

Transactional Modes:

- Class presentations
- Readings and class discussions
- Assignments
- Survey to study child rearing practices
- Case study analysis to understand contextual influence on development
- Exercises on self concept and personality development
- Use of online videos related to cognitive and moral development
- Case study of an adolescent

Suggested Readings:

School Education in India: Historical Perspective

Contact Periods/week: 03

Maximum Marks – 40
Min. Pass Marks – 13
Internal – 10

Course Description

The course ‘School Education in India’ seeks to develop an understanding of processes of how and why education system in India evolved over a period of time. It gives an understanding of the socio-historical evolution of Indian education system by drawing attention on history of formal education system. The course will trace the dimensions of basic understanding of culture, politics and economics that impacted school / university education in light of Vedic, Buddhist, Islamic and British education systems.

Course Objectives

- To introduce the systems of education in historical perspective to appreciate education and its relation to socio-political, cultural and economic context
- To explain about formal school system in India in socio-historical context and its institutionalization.
• To appreciate the change and continuities in educational purposes, processes and practices in ancient education.
• To develop historical perspective on contemporary educational issues and problems.

Unit-I: Understanding Educational Systems of Ancient India: Vedic Education
• Understanding 'India' of Ancient times: Economic Activities, Cultural Practices and Social System
• Social Foundation of education during Vedic period
• Origin and development of formal education during the period
• Vedic education system: Critical understanding of Aims, knowledge and educational practices and agencies.
• Relevance of Vedic educational practices to contemporary times.

Unit-II: Understanding Educational Systems of Ancient India: Buddhist Education
• Social development stage during Buddhist Period: Economic Activities, Development of commerce, Cultural Practices and Social System.
• Development of Education system and higher learning centers.
• Social Foundation of education during Buddhist period.
• Buddhist education system: Critical understanding of aims, knowledge and educational practices and agencies.
• Relevance of Buddhist educational practices to contemporary times.
• Comparative study of Vedic and Buddhist education systems.

Unit-III: Development of Islam Education during medieval period
• Understanding 'India' of Middle Ages: Economic activities, Commerce, cultural practices, social systems and political formations.
• Origin and development of Islam education.
• Islam education system: Critical understanding of aims, knowledge and educational practices and agencies.

Unit-IV: Education during Colonial period: British education
• Understanding 'India' of Modern period: Economic activities, commerce, cultural practices, social systems and political formations.
• The orientalist and anglicist Conflict.
- Efforts and Movement by Indians for compulsory education in India – M. hatma Jyothi Phale, Gokhale Bill(1910), Basic education (1937)
- British education system: Critical understanding of aims, knowledge and educational practices and agencies
- Contribution of British to Indian education

Transactional Modes:
- Class presentations
- Readings and class discussions
- Assignments
- Survey to study historical places
- Case study analysis to understand contextual influence on historical development
- Use of online videos related to the history of development of education in India

Suggested Readings:
Thapar, R. (2014). The past as present: Forging contemporary identities through history.

Health, Physical Education & Yoga - I

Contact Periods/week: 2 Practical

<table>
<thead>
<tr>
<th>Maximum Marks</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. Pass Marks</td>
<td>08</td>
</tr>
<tr>
<td>Internal</td>
<td>25</td>
</tr>
</tbody>
</table>

Unit I
Physical Education – Meaning Scope, Aims & Objectives of Physical Education, Health Education and recreation to general education, Concept and Importance of Health, Personal and Environmental Hygiene, Nutrition and Balance Diet.

Unit II
Physical Fitness, Motor Fitness, Component of Physical Fitness, Effect of Exercise on different Body Systems.

Unit III
Measurements and Evaluation in Physical Education, Different types of Physical Fitness Test and Motor Fitness Test.

Unit IV
Common Sports Injuries and Their Rehabilitation, First Aid, Snake Bite and its First Aid.

Unit V
Yoga Harmony of Body and Mind, Instrument of Yoga- Pranayama, Yogasana, Surya Namaskara, Meditation and Mental Health.

Work Education – I

Option I: Electricity and Electronics

Contact Periods/week: 2 Practical

<table>
<thead>
<tr>
<th>Maximum Marks</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. Pass Marks</td>
<td>08</td>
</tr>
<tr>
<td>Internal</td>
<td>25</td>
</tr>
</tbody>
</table>
Introduction:
Importance of Work Education has been highlighted in the Nation Policy of Education in 1986 and subsequently in NCF 2005. It has been emphasized that the Work Education should be in the form of well-structured, graded programme comprising activities to cater the needs of students. The level of knowledge and skills should be upgraded with the advancement in stage of education. The experience would be helpful to the student on his entry into work force.

Objectives:
On the completion of the course the students will be able to:
- Understand the concept of electricity and to define the term electrons, charge, current, voltage, resistance, power and energy.
- Recognize the importance of safety precaution and cause for electrical accidents.
- Identify and apply safe procedure in actual work situations and the step to be observed in electrical shock treatment.
- Acquire knowledge about tools and instrument required in electrical and electronics field.
- Develop the awareness of series and parallel circuit.
- Acquire knowledge about selecting wire, cables and fuse wires etc.
- Acquaint with functional aspects of various electrical and electronics accessories.
- Identify common measuring instrument.
- Learn connection of different common measuring instrument in the circuit.
- Acquire knowledge about working principal, operation and application of various domestic electrical and electronics appliances.
- Develop skills for dismantling, reassembling and testing of various domestic electrical and electronics appliances.
- Examine schematic layout, wiring diagram and product data of small electrical and electronics project.
- Install DTH, Public Address System (PAS), antenna and repair of T.V. and DVD player.

Learning Outcomes: The student will:
1. Develop practical skills, problem solving skills, experimental skills in him.
2. Get exposed to different processes / methods used in electrical and electronic devices.
3. Develop creative thinking for preparing new electrical and electronics devices.
4. Dismantle and assemble electrical and electronics devices.
5. Locate faults in these devices and repair them.
6. Understand the basic electrical quantities.
7. Recall safety precautions during electrical operations.
8. Rewire the fuse.
9. Understand the principles of functioning of electrical appliances.
10. Measure various electrical quantities.
11. Develop practical skills in repairing, maintaining, and making electronic devices used in day-to-day life.
13. Develop creative thinking in the area of electronics.
14. Develop understanding of basic electrical and electronics science.
15. Identify and test electronic components.
17. Locate fault of electronic devices by various methods i.e.
 i. Testing individual components
 ii. By signal flow method
 iii. By measuring voltages at testing points
18. Installation and use P.A. system.

Syllabus:

Unit 1: Basic Electricity
Definitions of basic electrical quantity electrons, charge, current, voltage, resistance, and power and its unit formula and calculations using simple circuits. A.C. and D.C. and graphical representation of amplitude, frequency, phase difference, wave length, Effect of electric current. Test the supply if A.C. / D.C. Single phase and 3 phase system.

Unit 2: Safety Precaution
Presentation and treatment of shock – cause and effect. First aid treatment To perform an exercise on artificial respiration. To remove person from electrical contact. Common tools description, precaution, care and maintenance of tools used for electrical work and personal
safety, shock treatment. Rescue and first aid. Sign and symbol their importance and abbreviation.

Unit 3: Electrical Circuit

Unit 4: Generation Transmission and Utilization of Electrical Power
Basic principal of electrical generation, Principle of Electro-magnetic Induction, Faraday’s Law, Lenz’s law. Principle of generator, A.C. and D.C. generator Fleming’s right hand rules, Transmission of electrical power single phase and three phase system, Types of transformer study of single phase transformer working principle, types, material used, construction, testing and specifications, Elementary idea about A.C. Generator. Distribution of electrical energy transmission at high voltage, energy losses during transmission, Types of insulator, pole and tower for transmission line, over head and underground distribution, relay and circuit breaker, uses of electrical power in house, factory, farm etc.

Unit 5: House Wiring
Types of wiring system, General rule for electrical wiring, wiring accessories, cleat, casing-cupping, CTS or TRS wiring, Lead sheathed wiring, conduit pipe wiring, wiring materials, load calculation of house. Types of wires & cables standard wire gauge. Classification of wires & cables-insulation and voltage grades, Fuse and its importance, general guideline for fuse, types of fuse and MCB. Eartailing and its importance and their type, earth resistance fuse and eartailing materials. Different types of wiring connection like staircase, Go-down wiring, Call-bell connection, different connection of bulb, tube-light connection etc. Arrangement of bulbs for a decorative series used in festivals. Make a switch board for one room set consisting of four points – Bulb, tube-light, ceiling fan and socket on the board.

Distribution of marks (25)
1. Internal Exam - 10 marks
2. Practical Exam - 10 marks
3. Record and Viva Vice - 05 marks

Suggested Reading:

4. Basic Electrical and house wiring published by G.T. Publication(Lab) India,Jaipur,Rajestan.

5. Principal of Electronics by V.K.Mehra and Rohit Mehta by S.Chand & Company Ltd, Ram Nagar New Delhi – 110055

Option II: Agriculture

Contact Periods/week: 2 Practical

Maximum Marks – 25

Min. Pass Marks – 08.

Internal – 25

Introduction:

The importance of Work Education has been highlighted in the National Policy of Education in 1986 and subsequently in NCF 2005. It has been emphasized that the Work Education should be in the form of well structured, graded programme comprising activities to cater the needs of students. The level of Knowledge and skills should be upgraded with the advancement in stages of education. The experience would be helpful to the students on his entry into work force.

Objectives/ Learning outcomes: On completion of the course students will be able to:

- Identify different types of ornamental plants, flowers and gardening tools.
- Propagate plant sexually and asexually.
- Identify different types of garden and its component and understand design & features of garden.
- Demonstrate the knowledge of floriculture.

Signature
Bachelor of Science and Bachelor of Education
Rani Durgawati University
COURSES OF STUDIES
For
Four Year Integrated
B.Sc.B.Ed. (Eight Semesters) Course

SECOND SEMESTER

<table>
<thead>
<tr>
<th>Subject/Paper</th>
<th>Paper</th>
<th>Intern.</th>
<th>Total</th>
<th>Pds./week</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Part: Foundation Course</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic of Computer</td>
<td>40</td>
<td>10</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>Language – Hindi</td>
<td>40</td>
<td>10</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>English</td>
<td>40</td>
<td>10</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>Elective I + Practical</td>
<td>60+25</td>
<td>15</td>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>Elective II + Practical</td>
<td>60+25</td>
<td>15</td>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>Elective III + Practical</td>
<td>60+25</td>
<td>15</td>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>375</td>
<td>75</td>
<td>450</td>
<td></td>
</tr>
<tr>
<td>B.Ed. Part</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cognition & Learning</td>
<td>40</td>
<td>10</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>Psychology Practical</td>
<td>-</td>
<td>25</td>
<td>25</td>
<td>2</td>
</tr>
<tr>
<td>Health, Physical Education & Yoga</td>
<td>-</td>
<td>25</td>
<td>25</td>
<td>2</td>
</tr>
<tr>
<td>Work Education</td>
<td>-</td>
<td>25</td>
<td>25</td>
<td>2</td>
</tr>
<tr>
<td>Art & Aesthetics</td>
<td>-</td>
<td>25</td>
<td>25</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
<td>110</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Grand Total</td>
<td>340</td>
<td>250</td>
<td>600</td>
<td></td>
</tr>
</tbody>
</table>

- Elective I – Physics/Botany
- Elective II – Chemistry
- Elective III – Zoology/Mathematics
(All electives will have one theory paper and external practical examination except Mathematics where there will be two theory papers and practice which will be valued internally)

<table>
<thead>
<tr>
<th>Semester Name</th>
<th>Paper</th>
<th>Marks</th>
<th>Paper Code</th>
<th>Name of Papers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Paper Theory-III</td>
<td>30</td>
<td>M-2,1</td>
<td>Differential Equations And Vector Calculus</td>
</tr>
<tr>
<td></td>
<td>Paper Theory-IV</td>
<td>30</td>
<td>M-2,2</td>
<td>3-D Geometry</td>
</tr>
<tr>
<td></td>
<td>Internal Test</td>
<td>15</td>
<td></td>
<td>Related To Above Papers</td>
</tr>
<tr>
<td></td>
<td>Practicum</td>
<td>25</td>
<td></td>
<td>Related To Above Papers</td>
</tr>
</tbody>
</table>

Work Education: Electricity and Electronics/ Agriculture

B.Sc. Component:

Foundation Course: Basics of Computers

Contact Periods/week: 03

Maximum Marks – 40

Min. Pass Marks – 13

Internal – 10

Objectives: On completion of this course, the student teachers will be able to:

- Appreciate the historical development of computer,
- Demonstrate understanding of the main components of the computer hardware in use,
- Use various digital technologies (hardware and software) for creating resources and providing learning experiences for all types of learners (including differently abled),
- Differentiate between digital and non-digital resources,
- Explain various operating systems and their main functions,
- Use a word processor, spread sheet, drawing and presentation software skilfully and intelligently to produce various teaching learning resources for educational use,
- Use internet technologies efficiently to access remote information, communicate and collaborate with others in different learning situations,
- Understand the social, economic, security and ethical issues associated with the use of Computer and internet.

[Signatures]
UNIT-I: Introduction to Computer

- History of computer
- What is a computer: Computer hardware fundamentals (anatomy, input devices, output devices, storage devices, display devices).
- Types of computers: Super Computer, Server Computer, Workstation Computer, Personal Computer or PC, Microcontroller
- Numeral System
 - Introduction
 - Decimal Numeral System
 - Binary Numeral System: Converting Binary to Decimal and vice versa
 - Hexadecimal Numeral System: Converting Hexadecimal to Decimal and vice versa
- Data sizes: bit, nibble, byte, word, KB, MB, GB, TB, PB
- Measurements of Data Speed: bps, kbps, mbps, gbps

UNIT-II: Hardware and Software

- Hardware Fundamentals
 - Use of digital still and video camera, digital sound recorder, scanner, printer, interactive white board, visualizer, and multimedia projector for creating and using multimedia resources
- Software Fundamentals
 - Software—Meaning and types; System software and Application software
 - Operating systems—Meaning and types; Windows, Linux, Macintosh
 - Navigating the desktop, control panel, file manager, explorer, and accessories
 - Concept, philosophy, types, and advantages of Proprietary software, open source software, shareware and freeware
 - Licenses—Software license, document license, fair use and piracy

UNIT-III: Software Applications

- Application software—Meaning and types
- Introduction to office applications
 - Word processing—Text (Indian and English), common features, functions and use, Educational applications of word processing
- Spreadsheet – Common features, functions and use; Educational applications of spreadsheets: Recording, reporting, and research
- Presentations – Common features, functions and use; Educational applications of presentations
- Databases – Common features, functions and use; Educational applications of database
- Drawing tools – Diagrams, concept maps, timelines, flow charts; Educational applications of these tools
 - File formats and conversion, utility tools
 - Cloud computing: Meaning and advantages
 - Online software tools and applications and their educational use

UNIT-IV: Motherboard and Computer Networks
- Introduction to the motherboard
- Expansion slots: Graphics card, Sound card, Network Interface Cards (NICs), PC Card, Express Card
- Ports: USB, Firewire, Parallel, Thunderbolt, Ethernet
- Definition of network
- Why were networks created?
- Types of common networks: LAN, WAN, The Internet, VPN
- Internet: concept and architecture; Locating internet resources – browsing, navigating, searching, selecting, evaluating, saving and bookmarking
- Computer security: Privacy, hacking, virus, spyware, misuse, abuse, antivirus, firewall, and safe practices

Sessional Work
- Hands on experience in setting up a desktop PC and working with various input devices, output devices, storage devices, and display devices
- Practicing word processing using Indian language software
- Practice in installing various system and application software
- Using word processor, spreadsheet, and presentation software to produce various teaching learning resources and sharing it online
- Locating internet resources – navigating, searching, selecting, saving and evaluating (use standard internet evaluation criteria)

[Signatures]
Suggested readings

 (www.ietcurriculum.gov.in)
- Introduction to Computer: https://en.wikiversity.org/wiki/Introduction_to_Computers

Foundation Course: Language – Hindi

आधार पाठ्यक्रम : हिंदी भाषा

प्रस्तुति - 2

Contact Periods/week: 03

कुल अंक - 40
आधारित बाध्यकार - 10
प्रश्न एवं उत्तर तयारी - 10

4 सारणिकालक/दीर्घावली प्रश्न - 28 एक्स 1 = प. 13

लघुपत्रीय प्रश्न - 07 एक्स (35 x 2 %)

उत्तुलिन प्रश्न - 05 एक्स [1 x 5 प्रश्न]

व्यापकतम एवं सारणिकालक प्रश्नों में प्रश्नातीतिक विवरण होगी।

Paul
G. Gulati
Swell. Reeti
Foundation Course: Language English

Paper II

Contact Periods/week: 03

Maximum Marks 40
Min. Pass Marks 13
Internal 10

Distribution of Marks:

1. Four critical questions are to be set from unit I. Two questions are to be attempted.
 Each question will carry 5 marks. (5 X 2 = 10 marks).

2. Students are required to write a paragraph on a given topic in about 100-125 words. (4 x 1 = 4 marks).

3. Students are required to attempt five questions based on the given unseen passage. Each question will carry 2 marks. (2 X 5 = 10 marks)

4. Students are required to attempt 6 questions on vocabulary. Each question will carry one mark. (1 X 6 = 6 marks)

5. Students are required to attempt 10 questions on Grammar. Each question will carry one mark. (1 X 10 = 10 marks).

UNIT I : William Wordsworth — The Solitary Reaper; Tagore (Trans) — A Song of Kabir;
Khushwant Singh — The Portrait of a Lady; Mahatma Gandhi — Satyagraha; R.K. Narayan —
The Axe; C.V. Raman — Water

UNIT II: Letter Writing — Formal, Informal and Business Letter

\[\text{Signature} \quad 42\]
UNIT III: Expansion of an Idea
UNIT IV: Word Formation; Prefixes & Suffixes; Figures of Speech.

Elective I – Physics

Paper II: Electromagnetic Theory and Elementary Kinetic Theory

Contact Periods/week: 05 + 4 Practical

Maximum Marks – 60
Min. Pass Marks – 20
Internal – 15 (Theory 10 & Practical 5)
Practical – 25 (External)

Note- At least one question will be set from each unit. 20% of the maximum marks will form simple numerical problems and another 20% would be for objective questions with a provision to provide reasoning. All Questions will have 100% internal Choice.

Objectives

After completion of this course, the students will be able to

1. Acquaint themselves with concepts of electric fields, electric flux, electric potential, dielectrics and polarization vector.
2. Understand Coulomb’s law, Gauss’s law Ampere’s law, Faraday’s law and Lenz’s law.
3. Solve the problems on Coulomb’s law, Ampere’s law and Gauss’s law.
4. Understand Ampere’s law and its applications.
5. Interpret that a bar magnet has a surface distribution of solenoidal current.
6. Appreciate the physical significance of E and B vectors and their role in the electromagnetic wave propagation.
7. Explain the concept of Poynting vector.
8. Explain varying currents.

Unit-I: Electrostatics

Coulomb’s law in vacuum expressed in vector form; multipole expansion of fields, work done on a charge in an electrostatic field expressed as a line integral, conservative nature of the electrostatic field, Laplace and Poisson equation in electrostatics and their applications, electric potential \(\Phi \), \(E = - \nabla \Phi \), Torque on a dipole in a uniform electric field and its energy, flux of the electric field, Gauss’s law and application for finding \(E \) for symmetric charge distributions.
Gaussian pillbox, field at the surface of a conductor, screening of \(E \) field by conductor, energy of a system of charges.

Unit -2: Magnetostatics

Force on a moving charge, Lorentz force equation and definition of \(B \). Force on a straight conductor carrying current in a uniform magnetic field, torque on a current loop, magnetic dipole moment, angular momentum and gyromagnetic ratio. Biot-Savart’s law, Ampere’s law and its applications, Field due to a magnetic dipole, magnetization current, magnetization vector, magnetic permeability (linear cases).

Unit -3: Dielectrics and Capacitors

Dielectrics; parallel plate capacitor with a dielectric, dielectric constant, polarization, solution to boundary value problems, conducting and dielectric spheres in a uniform electric field, displacement vector \(D \), molecular interpretation of Clausius-Mossotti equation, boundary conditions satisfied by \(E \) and \(D \) at the interface between two homogeneous dielectrics, illustration through a simple example.

Unit-4: Time varying Fields and Electromagnetic waves

Faraday’s law of electromagnetic induction, Self and mutual inductance, Energy in a static magnetic field; Maxwell’s displacement current; Maxwell’s equations; electromagnetic field energy density. The wave equation satisfied by \(E \) and \(B \); plane electromagnetic waves in vacuum; Poynting vector; reflection at a plane boundary of dielectrics; polarization by reflection; reflection and refraction coefficients at the boundary of two dielectrics (normal incidence only); and total internal reflection; waves in a conducting medium; reflection and refraction by the ionosphere.

Unit-5: Varying Currents

Currents through CR and LR circuits; High resistance by leakage, Alternating and Direct current, Analysis of LC and LCR circuits using complex number representation, Resonance, Q factor, Kirchhoff’s law and its application to AC circuits, Transformer and choke coil.

Physics Practical List

1. Conversion of galvanometer into ammeter of given range.

 I. To determine the resistance of a galvanometer by half deflection.
 II. To determine the figure of merit of galvanometer.
 III. To convert the galvanometer into an ammeter of a given range and to calibrate it.

2. To convert the galvanometer into a voltmeter of a given range and to calibrate it.
3. To determine the inductance of a given coil by Anderson bridge method.
4. To study the dependence of capacitance on separation of the plates of capacitor.
5. To study the variation of magnetic field along the axis of a current carrying circular coil.
6. Study of charging and discharging of capacitor.
7. To verify Kirchhoff’s current law and voltage law.
8. To determine the high resistance by leakage method.
11. To study ac wave form and to measure rms value of ac voltage using CRO.

Suggested Reading:
2. Electricity and Magnetism, Mhajan; Tata McGraw Hill.
3. Electromagnetic Waves and Radiating systems, Jordan Balman.
4. Electricity and Magnetism, K.K. Tewari.
5. Electrodynamics, Griffith.

Elective I – Botany

Paper II: Cell Biology and Genetics

Contact Periods/week: 05 + 4 Practical

Maximum Marks – 60

Min. Pass Marks – 20

Internal – 15 (Theory 10 & Practical 5)

Practical – 25 (External)

Note: Two questions will be set from each unit and students are required to attempt one question from each unit.

Objectives:

To enable the students to have an understanding about origin of life types, and detailed structure of cell inclusions.

Unit I: Origin of life and organization of cell

General account of origin of life, Structural concept of a cell – prokaryotic and eukaryotic organization, cell types

Unit II: Structure and function of cell organelles

Colli bodies, cytoskeleton, ER, peroxisome, vacuoles, plastids, mitochondria, ribosome.
Cell envelopes: Plasma membrane – different models; function; cell wall – structure and function.
Unit III: Structure and function of nucleus
General Trymllizat of nucleus, ultrastructure of nuclear membrane and nucleolus.
Chromosome – Trystallizat, morphology, centromere, telomere.
Chromosome alterations – deletions, duplications, translocations, inversions, variation in chromosome number – aneuploidy, polyplody.
Unit IV : Nucleic acids : DNA
Discovery of DNA as genetic material, its structure and types. DNA replication in prokaryotes and eukaryotes, structure of nucleosome. Satellite and repetitive DNA.
Unit V : Nucleic acid : RNA and cell division
Structure, types (m-RNA, t-RNA, r-RNA) and function of RNA.
Cell division : Cell cycle, mitosis and meiosis

Practical

Objectives:
- To develop skills of staining and slide preparations of lower and higher organism.
- To impart understanding of internal structures and their organization.
- To develop the skills for the preparation of smear for studying of all division.

Cell Biology
1. To study cell structure from onion leaf peels; demonstration of staining and mounting methods.
2. Comparative study of cell structure in onion cells, Hydrilla and Spirogyra. Study of cyclosis in Tradescantia Trystal cells.
3. Study of plastids to examine pigment distribution in plants (e.g. Castia, Lycopersicon and Capsicum).
4. Examination of electron micrographs of eukaryotic cells with special reference to organelles.
5. Study of electron micrographs of viruses, bacteria, cyanobacteria and eukaryotic cells for comparative cellular Trystallizat.
6. Examination of various stages of mitosis and meiosis using appropriate plant material (e.g. onion root tips, onion flower buds).
Scheme of Practical Examination

1. Preparation of a smear of root tip/autographs to identify different stages of cell division. 5
2. Demonstration of cyclosis in the given material. 5
3. To identify the type of plastids in the given material. 5
4. Comment upon the spots. 5
5. Practical Record/Sessional 5
6. Internal evaluation 5

Suggested Readings

Elective II – Chemistry
Paper II

Contact Periods/week: 05 + 4 Practical

Maximum Marks = 60
Min. Pass Marks = 20
Internal = 15 (Theory 10 & Practical 5)
Practical = 25 (External)

Note: Two questions will be set from each unit and students are required to attempt one question from each unit.

Objectives:

After the end of the 2nd semester the students should be able to:

* get the knowledge of basic concept of organic chemistry, like the tetravalency of Carbon, the concept of hybridization, the concept of resonance, hyperconjugation, and aromaticity.
* strengthen the knowledge regarding the nomenclature of organic compounds.
* explain the properties of organic compounds in terms of the structure of the functional groups.
* Acquire knowledge regarding the directional characteristics of covalent bond and discuss the stereochemistry of organic compounds centering around the directional characteristics of the covalent bond.
* highlight the importance of the study of kinetics in elucidation of mechanism of organic reactions.
* explain the reactions in organic chemistry in terms of free radical mechanism, substitution reactions, addition reactions and molecular rearrangement pattern.
* Acquire knowledge regarding the role of aryl radical as it affects the properties of organic compounds.
* develop competency to explain the chemistry of organic compounds in terms of comparative Trystall of alkyl and aryl com
* Differentiate phenols and alcohols on the basis of their acidic and neutral behaviours.

Instructional Strategy:
The teacher while discussing the stereochemistry may use ball and stick model to focus the clarity in concept formation. While adopting the lecture technique, the teacher may make the presentation of subject matter interesting by adopting the structural approach (high lighting
importance of reaction mechanism in the teaching of organic chemistry). In the subject treatment of open chain and closed chain compounds and alkyl and aryl derivatives the teacher may take the help of comparative organizers (a type of advance organizer).

Unit-I: Structure and Bonding
Hybridization, bond lengths and bond angles, bond energy, localized and delocalized chemical bond, van der Waals interactions, inclusion compounds, clathrate, charge transfer complexes, resonance, hyperconjugation, aromaticity, inductive and field effects, hydrogen bonding.

Mechanism of Organic Reactions
Curved arrow notation, drawing electron movements with arrows, half-headed and double-headed arrows, Trystalli and heterolytic bond breaking. Types of organic reactions: Energy consideration.

Reactive intermediates (carbocations, carbanions, free radicals, carbenes, arynes and nitrene with examples). Assigning formal charges on intermediates and other ionic species.

Methods of determination of reaction mechanism (product analysis, intermediates, isotope effects, kinetic and stereochemical studies).

Stereochemistry of Organic Compounds
Concept of isomerism. Types of isomerism.

Optical isomerism—elements of symmetry, molecular chirality, enantiomers, stereogenic centre, optical activity, properties of enantiomers, chiral and achiral molecules with two stereogenic centres, diastereomers, threo and erythrodiastereomers, meso compounds, resolution of enantiomers, inversion, retention and racemization.

Relative and absolute configuration, sequence rules, D & L and R & S systems of nomenclature. Geometric isomerism—determination of configuration of geometric isomers. E & Z system of nomenclature, geometric isomerism in oximes and alicyclic compounds.

Conformational isomerism—conformational analysis of ethane and n-butane; conformations of cyclohexane, axial and equatorial bonds, conformation of mono substituted cyclohexane, derivatives.

Newman projection and Sawhorse formulae, Fischer and flying wedge formulae.

Difference between configuration and conformation.

Unit-II: Alkanes and Cycloalkanes
IUPAC nomenclature of branched and unbranched alkanes, the alkyl group, classification of carbon atoms in alkanes. Isomerism in alkanes, sources, methods of formation (with special reference to Wurtz reaction, Kolbe reaction, Corey-House reaction and decarboxylation of carboxylic acids), physical properties and chemical reactions of alkanes.

Mechanism of free radical Crystallization of alkanes: orientation, reactivity and selectivity. Cycloalkanes—nomenclature, methods of formation, chemical reactions, Froyer’s strain theory and its limitations. Ring strain in small rings (cyclopropane and cyclobutane); theory of strainless rings. The case of cyclopropanation: banana bonds.

Arenes and Aromaticity

Lui-III Alkenes, Cycloalkenes, Dienes and Alkynes

Ultraviolet Alkyl and Aryl Halides

Nomenclature and classes of alkyl halides, methods of formation, chemical reactions. Mechanisms of nucleophilic substitution reactions of alkyl halides, S_N2 and S_N1 reactions with energy profile diagrams.

Polyhalogencompounds: chloroform, carbon tetrachloride.

Methods of formation of aryl halides, nuclear and side chain reactions. The addition-elimination and the elimination-addition mechanisms of nucleophilic aromatic substitution reactions. Relative reactivities of alkyl halides vs allyl, vinyl and aryl halides. Synthesis and uses of HBT and HBC Freons.

Ultraviolet Alcohols

Polyhydric alcohols — nomenclature, methods of formation, chemical reactions of vicinal glycols, oxidative cleavage [Ph (Oac)2 and HIO4] and pinacol-pinacolone rearrangement. Tertiary alcohols — nomenclature and methods of formation, chemical reactions of glycerol.

Phenols

Practical

1. Qualitative analysis of single organic compound.
2. One stage preparation and crystallization of three organic compound from the list given below —
 (a) Benzoyl chloride to Benzamide.
 (b) Aniline to Acetanilide.
 (c) Preparation of p-bromoacetanilide from acetanilide.
 (d) Benzoylation of aniline.
 (e) Preparation of iodoform.

[Signatures]
(f) Benzamide to Benzoic acid.

3. Determination of molecular mass of organic compounds.

Scheme of Examination (Practical) Time allotted – 5 hrs

Experiments

(1) Qualitative org. analysis - 5
(2) One stage preparation - 5
(3) Molecular mass determination - 5
 Internal assessment - 5
 Viva - 5

Suggested Readings:
3. Solomons and Fryhle, Organic Chemistry, WILEY International
8. Bhal, Anum&Bhal, B.S., Organic Chemistry, S. Chand & Company

Elective III – Zoology

Paper II: VERTEBRATES

Contact Periods/week: 05 + 4 Practical

Maximum Marks – 60
Min. Pass Marks – 30
Internal – 15 (Theory 10 & Practical 5)
Practical – 25 (External)

Note: Two questions will be set from each unit and students are required to attempt one question from each unit.

Objective:
To gain knowledge of classification of Vertebrates, their structure, organization, representative animals and comparative anatomy.
Unit-1
1. Classification of Vertebrata upto orders with examples.
2. Affinities and special characters of cyclostomes (comparison between Petromyzon and Myxine).
3. Elasmobranchies – Type study of Sceliodon.
4. Teleosts – Type study of Labeo.
5. Air bladder and gills in fishes.

Unit-2
1. Amphibian - Type study of frog.
2. Parental care, neoteny and metamorphosis in amphibians.
3. Reptilia – Type study of Uromastix.
4. Anatomical peculiarities in snake.
5. Biting mechanism and poison apparatus in snakes.

Unit-3
1. Aves-Type study of pigeon.
2. Flight and perching mechanism in birds.
3. Mammalia – Type study of rabbits.

Unit-4
Comparative anatomy from Pisces to Mammalia
1. Comparative study of integumentary system and study of integumentary derivatives (scales, feathers, horns and hooves).
2. Comparative study of digestive system.
3. Comparative study of respiratory system.
4. Comparative study of heart and aortic arches.
5. Comparative study of urinogenital system.

Unit-5
Comparative study of endoskeleton from Amphibia to Mammalia.
1. Skull
2. Limb Bones and Girdles.
3. Vertebrae.
4. Special endoskeletal structures (urostyle, astragulus, calcaneum, synsacrum, pygostyle)

PRACTICAL

Objective- To study and develop skill of identification of animals, their histology, comparison of anatomy, physiology and their osteology.

1. Study of museum specimen, slides, relevant to the theory from Cyclostomes to Mammalia.
2. Permanent slide preparation- scales of fishes.
3. Comparative study of integument, digestive tract and blood cells of vertebrates through permanent slides.
4. Comparative study of brain of different vertebrates through charts and models.
5. Comparative vertebrate osteology e.g frog, fowl, rabbit (skull, limb bones, girdles, special bones, vertebrae)
6. Comparative study of heart and aortic arches, respiratory system and urinogenital system through charts and models.

SCHEME OF PRACTICAL EXAMINATION

1. Spotting — 10
2. Mounting — 03
3. Exercise based on bones — 05
4. Practical Records — 03
5. Viva-voce — 04

Total — 25 Marks

Referred books -:
1. Textbook Of Zoology Vol II (Vertebrate)-Parker & Haswell
2. Animal Biology (Vol II) — Adhikari, Ganguly & Sinha
3. Textbook of Vertebrates- R.L. Kroipa
5. Zoology of Chordates —Nigam H.C
6. Comparative anatomy of Vertebrates — Kent
8. Element of chordates anatomy — Weichert
9. Practical Zoology Vertebrates—S.S. Lal
10. Practical Zoology of Chordates — P.S. Verma
Elective III – Mathematics

Contact Periods/week: 05 + 4 Practicum

Maximum Marks – 30 + 30 = 60
Min. Pass Marks – 20
Internal – 15 (Theory 10 & Practicum 5)
Practicum – 25 (Internal)

M -2.1 DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS

NOTE: Two questions will be set from each unit with internal choice

Objectives:

- To develop understanding of Differential Equations and their applications
- To develop understanding of basic concepts of Vector Integration
- To enable them to solve the problems based on Green, Gauss and Stokes

Unit – I
Degree and order of differential equation. Equations of first order and first degree. Equations in which the variables are separable. Homogeneous equations.

Unit – II
Linear equations and equations reducible to the linear form. Exact differential equations. First order higher degree equations solvable for x, y, p. Clairaut’s form and singular solutions. Geometrical meaning of a differential equation. Orthogonal trajectories.

Unit – III
Linear differential equations with constant coefficients. Homogeneous linear ordinary differential equations. Linear differential equations of second order. Transformation of the equation by changing the dependent variable/ the independent variable.

Unit – IV
Method of variation of parameters. Ordinary simultaneous differential equations.

Unit – V
Vector Integration, Gauss Theorem, Theorems of Green, Gauss, Stokes and problems based on these.

Content as in:

- Manglik and Seth Vector Calculus
- B.R. Thakur, Nigam, Sinha and Saren - Vector Analysis

[Signatures]
M – 2.2: 3-D GEOMETRY

NOTE: Two questions will be set from each unit with internal choice.

Objectives:
- To develop understanding of conicoids
- To develop the ability to reduce second degree equation in 3-Dimensions
- To develop ability to treat general equation of second degree including con-focal conics
- To make them familiar with the mechanism of deriving equations of surfaces in 3-dimensions.
- To enable them to treat conics in polar form

Unit-I General equation of second degree, Tracing of conics, system of conics, confocal conics
Unit-II Polar equation of a conic.
Unit – III Central Conicoids, Pambolooids
Unit – IV Plane sections of coincoids, Generating lines, Confocal Conicoids
Unit – V Reduction of second degree equations.

Content as in:
5. R.J.T. Bell : Elementary Treatise on Coordinate Geometry of 3-Dimension
 Mc. Milan

M – 2.3 Mathematics Practicum

List of Activities:
- Activity oriented problem solving / Experiments using Mathematical software or computer programming language based on the content studied in semester II Mathematics papers M-2.1 and M-2.2.
- Mathematics seminar.
Education Component:

Cognition and Learning

Contact Periods/week: 03

Maximum Marks – 40
Min. Pass Marks – 13
Internal – 10

Objectives

• Explore the possibilities of an understanding of processes in human cognition and
 meaning—making them as basis for designing learning environments and experiences in
 school
• To become aware of different contexts of learning and situate schools as a
 special environment for learning
• To develop awareness of the different contexts of learning,
• To reflect on their own implicit understanding of the nature and kinds of learning,
• Gain an understanding of different theoretical perspectives on learning with a focus on
 cognitive views of learning as well as social–constructivist theories;
• Appreciate the critical role of learner’s based on differences and contexts in making
 meanings, and hence draw out implications for schools and teachers.

UNIT 1: COGNITION

• Meaning of Cognition and its Role in learning
• Structure and Process of Cognition: sensation, perception, attention, memory, concept
 formation and problem-solving in learning.
• Socio-cultural factors that influence cognition

UNIT 2: THEORETICAL PERSPECTIVES ON LEARNING

• Implicit knowledge and beliefs about learning (demystifying misconceptions).
• Perspectives on human learning: Behaviourist (conditioning paradigm in brief),
 cognitivist, information-processing view, humanist, social-constructivist (drawing
 selectively on the ideas of Skinner, Piaget, Rogers, Vygotsky).
• Concepts and principles of each perspective and their applicability in different learning
 situations.

UNIT 3: ROLE OF LEARNER IN LEARNING
• Role of learner in various learning situations, as seen in different theoretical perspectives.
• Role of teacher in teaching-learning situations: a) transmitter of knowledge, b) model, c) facilitator, d) negotiator, e) co-learner. (The focus is on building understanding of different psychological perspectives of learning and helping student teachers to learn to apply them in different learning situations).
• Distinctions between learning as ‘construction of knowledge’ and learning as ‘transmission and reception of knowledge’.

UNIT 4: INDIVIDUAL DIFFERENCES AMONG LEARNERS
• Dimensions of differences in psychological attributes—cognitive abilities, interest, aptitude, creativity, personality, values.
• Understanding learners from multiple intelligences perspective with a focus on Gardner’s theory of multiple intelligences including emotional intelligence.
• Differences in learners based on socio-cultural contexts.
• Understanding differences based on a range of cognitive abilities—learning difficulties, slow learners and dyslexics, intellectual deficiency, intellectual giftedness and implications for classroom practices and teaching.

Suggested Sessional Work
• Reflective Written Assignments – comments and grade
• Field observation notes – comments and grade
• Participation in discussions – to be assessed qualitatively (along a set of rubrics)
• Analysis of a learning situation and case study, using theoretical perspectives – to assess for conceptual grasp and clarity of analysis – comments, further questions, grade
• A written test can be given on ‘conceptual grasp’ of theories of teaching, learning and cognition, as well as ‘working understanding’ of constructivist approach to construction of knowledge – evaluated with marks.
• Assignment on the implications of Piaget/Vygotsky/Ausubel’s approach to teaching-learning
• Student panel discussion of selected themes.
• Class presentations
• Readings and class discussions
• Assignments

[Signatures]
Suggested Reading

- Aggarwal, J.C. Essential of Educational Psychology. Vikas Publishers, Delhi, 1998
- Bhatia, H.R., A Text Book of Educational Psychology, Delhi: McMillan Co., New Delhi, 1977
- Chauhan, S.S. Advanced Educational Psychology, Vikas Publishing New Delhi, 1996
- Jeanne Ellis Ormrod Educational Psychology: Developing Learners. Fourth Edition

• Kundu, V.L. and Totoo, D.N., Educational Psychology, Sterling Publishers, New Delhi.
• Mangal, S.K. Advanced Educational Psychology. Prentice Hall of India Pvt. Ltd., 1999
• Mathur, S.S., Educational Psychology. 9th Ed., VinodPustakMandir, Agra, 1981
• Patricia A. Alexander, Phillip H. Winne (2006) Handbook of Educational Psychology
• Rosser, Rosemary A. (1993). Cognitive Development: Psychological and Biological Perspectives, AllynandBacon:USA
• Sarangapari M. Padma(2003.), Constructing School Knowledge :An Ethnography of learning in an Indian Village, Sage Publication
• Sibia, A. (2006): Life at Mirambika, NCERT, New Delhi
• Shivashankara H.V. and Basakumar P., ShaikshanikaManovijnana. HanjiPrakashanaDavangere, 1977
• Thorndike Edward L., (2007) Educational Psychology, Published by READ Books.
• Walia, J.S. Foundation of Educational Psychology, Paul Publishers, Jalandhar, 2001
• Wolfolk, Educational Psychology, Prentice Hall: Englewood Cliff, 1987

Psychology Practical

Contact Periods/week: 03

Any five from the following:
I. Intelligence (Verbal, Non-Verbal and Performance Tests)
II. Personality
III. Creativity
IV. Motivation
V. Learning
VI. Concept Formation
VII. Problem Solving

Maximum Marks – 25
Min. Pass Marks – 08
Internal – 25

Health, Physical Education & Yoga –II

Contact Periods/week: 2 Practical

Unit I
Programme of Physical Fitness and Muscular Development (Free Hand and Callisthenic Exercise): Circuit Training and Weight Training.

Unit II
Athletics is Printing and Distance Running- Crouch Start, Striding, Curve Running and Finishing Technique.
Jumps- Approach Run, Take off, Clearance and Landing.
Throws- Hold/Grip, Placement/Swing, Stance, Action, Releasing and Recovery.

Unit III
Layout and Marking of Track and Field and Different Play Grounds.

Unit IV
Teaching Skills of Major Games, Teaching Rules, Officiating and Organizing Tournaments of Major Games.
-Cricket, Football, Khaddi, Kho-Kho, Volleyball, Basketball, Table-Tennis, Lawn-Tennis, Badminton
-Instruction and demonstration of basic skills
-Equipments and dimensions of play fields
-Common rules and interpretation
-Organization and conduct of tournament/competition.

Unit V
Teaching lesson in physical education and sports (skills)

Art & Aesthetic

Contact Periods/week: 02

Maximum Marks – 25
Min. Pass Marks – 08
Internal – 25

Introduction:
The need of integrate arts education in the formal schooling of our students is to retain our unique cultural identity in all its diversity and richness and encourage little children and creative minds to do the arts. An understanding of the arts and aesthetics will give our children to give ability to appreciate the richness and variety of artistic traditions as well as make them liberal, creative thinker and after all a good citizen of the nation.

In National Curriculum frame work (2000, 2005) and National Education Policy introduced arts education as a mainstream curricular area, which must be taught in every elementary and primary schools as a compulsory subject up to secondary level, keeping this in view, its all the more important that arts education is integrated in the school curriculum to provide an
aesthetically viable atmosphere in elementary levels encouraging creativity. For this, not only the art teachers but every teacher should be sensitive to appreciate this.

Aim:
Teaching Arts education in elementary and school may be perceived as a tool for development of aesthetics sensitivity among learners to enable them to respond to the beauty in different form of arts. For effectiveness and interest of teaching, curricular area of arts education are required. Some broader objectives are follow-

- Objectives:
 - अभ्यास—अभ्यास प्रविधियों को अभ्यास के रूप में दौड़कर बनाना।
 - चित्रार्थ—अभ्यास के दौरान आंग्लित से पाठ, पाठ्यक्रम, प्रश्न—प्रश्नात्मक की सही एवं सुन्दर रचने हेतु कलामकार कार्य की प्रेरणा देना।
 - सीखने—सीखने हेतु सौंदर्य, संदेशात्मक एवं कल्पनाशीलता का सम्बन्ध कराना।
 - कलामकार वृत्तिकल्पना एवं संस्कृतिक घटनाओं की सहायता हेतु विश्वसनीय उपाध्याय कराया।
 - अभ्यास—अभ्यास के माध्यम से कलाकार तथा प्रशिक्षक सभी शाखाओं की निर्भरता से विश्वसनीय प्राप्त कराया।
 - प्रकृति—पारिषद, पर्यावरण और आधुनिक समस्तियों को विषयक कलाकारों को नवीनिता से शीघ्रता को अधिक प्राप्त कराया।
 - अभ्यास प्रविधि में कलाकारों को जोड़कर काम कराने कराया।
 - साहित्य एवं सौंदर्यकला के अधिकारगत नीतियों एवं पाठ्यक्रमीय कर्मचारी के द्वारा कराया।
 - विश्वसनीय साहित्य, विकास, स्थायीत्व एवं अन्य दुर्दशा—शास्त्र कलाकारों को टेक्नीकलों के माध्यम से लाभ कराया एवं उपलब्ध रैक्सार।
 - कलाकारों से अन्य विषयों के सारणसे पाठ्यांकी भीतर एवं संस्कृति के प्रति लगभग पूरा कराया।
 - विषयक कलाकारों और उनके जीवन को जानना।

COURSE—CONTENT

Unit – 1 Art का है, कलाकारों के प्रकार Concept of Art Education—
- कलाकारों का महाकाव्य योग की सलह कराया। कलाकारों जीवन में रचना। कलाकारों से जीवनकार्य आदि।
- कला और शिक्षा —
 - कला शिक्षा और कलाकारों के साथ सम्बन्धित शिक्षा।
 - कला के क्षेत्र (work), विस्तार।

Unit – 2 Visual Art उपयोग कलाकार (Visual)—
- रेखाचित्र, चित्रकला, शोधकारण, दांव, कला, आदि और उनके प्रकार। विज्ञानिकों उसकी नविनिता आदि।
 - विज्ञानिकों एवं कलाकार जीवन की सीढ़ी में कैसे सहायक करती है?
Unit 3: Activities & Assignments

1. Visit the following places and write a report about them:
 - Museum
 - Art Gallery
 - Craft Centre
 - Local market
 - Historical site

2. Participate in a public performance. Select a group and perform a play.

3. Arrange a visit to a dance company and observe their rehearsals.

4. Conduct a research on the history and development of your state's culture.

5. Write a descriptive essay about the cultural diversity in your region.

6. Participate in a debate on the importance of cultural heritage.

7. Create a video or presentation on a local artist or cultural figure.

8. Attend a cultural festival and write a review.

Activities & Assignments -

1. Participate in a cultural festival and document your experience.

2. Conduct a survey on the impact of cultural activities on community life.

3. Write a report on the role of art and music in education.

4. Create a poster or wallpaper design inspired by traditional art forms.

5. Participate in a dance competition and document your experience.

6. Create a scrapbook of your cultural journey.

7. Write a reflective essay on the importance of cultural preservation.

8. Participate in a workshop on traditional arts and document your experience.

Reference:

i. NCF - 2005
ii. Position papers of Arts and Craft and Drama, Music

References:

- NCF - 2005
- Position papers of Arts and Craft and Drama, Music
iii. Basic Education
iv. Wikipedia – Art Education
vi. Drama and Theatre in Education, Dodd, Nigel and Winifred Hickson (1980).
xi. Deevaswapna, Gujabhal Badheka, Indore.

Websites:

i. www.Art integrated learning/Edu/primary
ii. www.Basic Education through Art
iii. www.Indian Arts and Culture
iv. www.YouTube/Art/Primary education

Work Education II

Option I: Electricity and Electronics

Contact Periods/week: 2 Practical

Maximum Marks – 25
Min. Pass Marks – 08
Internal – 25

Syllabus:

Unit I: Electrical and Electronics measurement and measuring Instrument

Introduction, use, type (based on working and construction) and connections of Ammeter, voltmeter, wattmeter, frequency meter, power factor meter, megger, ohmmeter, Energy meter and Multi-meter. Measuring technique and precaution during their operation in electrical circuit. Introduction of multi-meter and method of its uses, testing of electrical appliances using multi-meter, Principle of fault location and demonstration using multi-meter.
Unit 2: Basic Electronics
Conductor, Insulator and Semiconductor materials, extrinsic and intrinsic semiconductor materials, P-Type and N-Type Semiconductor material, doping, formation of P-N junction diode, forward, and reverse biasing of diode, characteristic and application. Formation of P-N, P and N-P-N junction transistor, biasing of transistor, characteristic, and their application. Soldering - Principle, method, and materials. Practice of soldering.

Unit 3: Electronics component and Materials

Unit 4: Construction of common Electronics Circuit
Construction of eight L.E.D. disco light, Testing of disco light checking individual components, Construction of battery eliminator. (using half wave/full wave circuit), Testing of battery eliminator, checking individual components, Simple construction of fire alarm (using photocell), Construction of audio amplifier, Construction of oscillator, Construction of Musical bell, Construction of Simple emergency light, Regulated power supply, Testing of musical bell, emergency light, amplifier and oscillator by measuring voltages, Construction of light operated switch. PAS (Public Address System)-(a) Components of PAS and their specification. (b) Demonstration - Installation (c) Connectors used with microphones (d) Locating and repairing of minor faults in PAS.

Unit 5: Repairing of Home Appliances
House appliance repairing like Electrical Press, Heater, Immersion Rod, Electrical Kettle, Fan, Cooler, and Mixer, Rewire the fuse, To find the fault in above electrical appliances and rectify them. Outline the principles of working of Washing Machine and locating faults, Microwave - Outline the working principle and maintenance of a microwave. To study the construction, working and maintenance of different types of electrical motors.

Distribution of marks:
- Internal Exam - 10 marks
- Practical Exam - 10 marks
- Record and Viva Vice - 05
WORK EDUCATION - II
Option II: Agriculture – KITCHEN GARDENING & FRUIT PRESERVATION

Syllabus:

Unit-I Kitchen gardening – Importance, Establishment & Management.

Unit-II Identification and cultivation of vegetable crops suitable for kitchen gardening viz: Pea, Carrot, Onion, Okra, Chilli and Radish etc. Identification and cultivation of Fruit crops suitable for kitchen gardening viz: Citrus, Papaya, Banana, Grapes and Mango etc.

Unit-III Applied knowledge of common manures, fertilizers their uses and methods of application, Identification knowledge of common pesticides and their uses in kitchen garden.

Unit-IV Fruit Preservation – Principles of Fruit preservation, Different methods of fruit preservation, Causes of Spoilage and their remedies

Unit-V Preparation of some fruit products; Jam, Jelly, Squashes, Ketchup & Pickles.

SCHEME OF EXAMINATION (25 marks)

1. Identification of seasonal vegetables and Fruit Crops with comments - 05 marks
2. Drawing layout Plan of a Kitchen Garden - 05 marks
3. Principles and different methods of fruit preservation - 05 marks
4. Preparation method of Jam, Jelly, Ketchup, Sauce and Pickles - 05 marks
5. Viva and Practical Record - 05 marks

Suggested Readings:

3. Fruit & vegetable preservation industries in India, Bhutani, R.C.; C.F.T.R.I.; Mysore.
4. Vegetable production in India, Chauhan, D.V.S.; Ram Prasad and Sons, Agra.
6. Instant Horticulture; Gupta, S.N.; Naik, K.B; Jain Brothers, New Delhi.
Bachelor of Science and Bachelor of Education
Rani Durgawati University
COURSES OF STUDIES
For
Four Year Integrated
B.Sc.B.Ed. (Eight Semesters) Course
THIRD SEMESTER

<table>
<thead>
<tr>
<th>Subject/Paper</th>
<th>Paper</th>
<th>Intern.</th>
<th>Total</th>
<th>Pds./week</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSc. Part: Foundation Course</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comp. & ICT in Education</td>
<td>40</td>
<td>10</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>Language – Hindi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- English</td>
<td>40</td>
<td>10</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>Elective I + Practical</td>
<td>60+25</td>
<td>15</td>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>Elective II + Practical</td>
<td>60+25</td>
<td>15</td>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>Elective III + Practical</td>
<td>60+25</td>
<td>15</td>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>375</td>
<td>75</td>
<td>450</td>
<td></td>
</tr>
<tr>
<td>B.Ed. Part</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reading & Reflection on text</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curriculum Development</td>
<td>40</td>
<td>10</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>Arts and Aesthetics</td>
<td></td>
<td>25</td>
<td>25</td>
<td>2</td>
</tr>
<tr>
<td>Community Living</td>
<td></td>
<td>25</td>
<td>25</td>
<td>1 week</td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
<td>110</td>
<td>150</td>
<td>2</td>
</tr>
<tr>
<td>Grand Total</td>
<td>415</td>
<td>185</td>
<td>600</td>
<td></td>
</tr>
</tbody>
</table>

- Elective 1 – Physics/ Botany.
- Elective 2 – Chemistry.
- Elective 3 – Zoology/Mathematics
(All electives will have one theory paper and external practical examination except Mathematics where there will be two theory papers and practicum which will be valued internally)

<table>
<thead>
<tr>
<th>Semester</th>
<th>Paper</th>
<th>Mark</th>
<th>Paper Code</th>
<th>Name of Papers</th>
</tr>
</thead>
<tbody>
<tr>
<td>III</td>
<td>Paper Theory-V</td>
<td>30</td>
<td>M-3.1</td>
<td>Advanced Calculus</td>
</tr>
<tr>
<td></td>
<td>Paper Theory-VI</td>
<td>30</td>
<td>M-3.2</td>
<td>Differential Equation</td>
</tr>
<tr>
<td></td>
<td>Internal Test</td>
<td>15</td>
<td></td>
<td>Related To Above Papers</td>
</tr>
<tr>
<td></td>
<td>Practicum</td>
<td>25</td>
<td></td>
<td>Related to Above Papers</td>
</tr>
</tbody>
</table>

B.Sc. Component:

Foundation Course: Computers & ICT in Education – I

Contact Periods/week: 03
Maximum Marks – 40
Min. Pass Marks – 13
Internal – 10

Objectives: On completion of this course, the student teachers will be able to:

- Appreciate the historical development of various educational media,
- Explain ICT and its application in education,
- Plan multimedia based learning content using open source authoring software,
- Develop technology integrated learning materials using ICT tools,
- Explain different approaches of ICT integration in education,
- Use various ICTs for project based/problem based constructivist learning environment,
- Use ICT for designing innovative pedagogical approaches,
- Use various web 2.0 technologies for educational purpose,
- Create collaborative learning situation using various web 2.0 tools and technologies,
- Develop skills in using various e-learning tools and technologies.

UNIT-I: Introduction to Information and Communication Technology

- Use of Technology in Education: A look back
 - Role of technology in enhancing learning, basic theories of communication, system theory and learning theory
Historical account of the development of various educational media (audio, print, video, storage, display, projection)

Review of the role of technology in traditional pedagogical practices—programmed learning, Keller’s plan, Computer Based Instruction, Mastery Learning

Role of technology in emerging pedagogical practices; importance of new media literacy

Information and Communication Technology: Meaning, nature and advantages

UNIT II – Multimedia and E-learning

Multimedia:
- Concept, meaning and procedure of creating multimedia
- Multimedia tools—Audio editing, video editing, screen casting, graphic editing, basics of animation, and creating interactive multimedia contents

E-learning:
- Concept, types, characteristics, advantages and limitations
- E-learning tools and technologies—Learning Management Systems (LMS)
- E-content authoring tools—Open source and proprietary alternatives
- Re-usable learning objects (RLO)—Meaning, types and characteristics. RLO repositories

UNIT III – Web 2.0 Technologies

Web 2.0 technology and tools: Meaning characteristics and types

Social networking and social bookmarking—Educational applications

Blog and micro blog—Reflective journaling and other educational applications

Wiki—Collaborative authoring and projects

Instant messaging and its educational applications

Educational applications of online forums/discussion groups and chats

Social media sharing—Video, presentations, audio (podcasts), graphics, and text

Web 2.0 tools for creating, sharing, collaborating, and networking

UNIT-IV: ICT and Pedagogy

Approaches to integrating ICT in teaching and learning: Technological Pedagogical Content Knowledge (TPCK)

Subject specific ICT tools for creating and facilitating learning

[Signatures]
• Subject specific online resources and their use
• Designing technology integrated learning experiences
• ICT integrated Unit plan – Use of Web 2.0 for creating constructivist learning environment
• Assistive technology for children with special needs: Tools and processes; Universal Design for Learning (UDL)
• ICT for Pedagogical Innovations
 o Project/problem based learning (PBL): Role of ICT in developing technology integrated PBL unit
 o Web Quest and virtual field trips: Concept, process, and use in the classroom
 o Multiple intelligences in classroom: ICT tools and applications
 o Mobile learning and related applications
 o Open Educational Resources – Meaning and importance, various OER initiatives
 o Massive Open Online Courses (MOOC)-Concept and use
 o Flipped classrooms: Meaning and possibilities

Sessional Work
• Creating digital concept maps, flow charts, timelines for a particular content
• Creating screen cast video of a lesson
• Creating a podcast using audacity and sharing it on podcasting site
• Shooting, editing, and sharing of videos segment on any educational topic
• Creating a simple 2D animation using pencil or Tupi
• Creating and editing various graphics
• Creating account in teachertube/slideshare and sharing your video/presentation. View and comment on others contributions
• Enrolling and completing some MOOC courses of interest
• Creating resources for flipped classroom and practicing flipped learning in school
• Evaluating OER resources, Creating and sharing OER materials
• Developing technology integrated unit/lesson plans and trying out this in schools
• Hands on experience on subject specific software tools like Geogebra, PhET, Stellarium, etc.
• Taking part in an ICT integrated online project based or problem based learning activity

[Signatures]
• Developing a multimedia e-content for a topic using eXe Learning.

Suggested readings:
• Jane Hunter (2015). Technology Integration and High Possibility Classrooms: Building from TPACK.

• NCERT (2013) Information and Communication Technology for School System: Curricula for ICTs in Education (students and Teachers), Version-1.2, CIET-NCERT, NCERT, New Delhi (www.ictecriculum.gov.in)

• NCERT (2013) National Repository of Open Educational resources (NROET), CIET-NCERT, NCERT, New Delhi (nroer.gov.in)

• Noam Shemtov, Ian Walden,(2014)Free and Open Source Software; Policy, Law and Practice. Oxford University Press

Foundation Course: Language – Hindi

अध्याय पाठ्यक्रमः हिंदी भाषा

प्रमाण नं. - 3

Contact Periods/week: 03

कुल अंक — 40

अध्याय पाठ्यक्रम — 11

प्रमाण एवं संबंधित निर्देश

4 नं. पाठ्यक्रम/दौरीवातीय प्रमाण — 28 अंक (7 X 4 प्र.)

लघुवातीय प्रमाण — 07 अंक (7 X 2 प्र.)

द्विमूलित प्रमाण — 05 अंक (1 X 5 प्र.)

वांछित एवं संबंधित प्रमाण में अध्यायिक विवरण होगी

इकाई - 1

1. दिवागी पुष्पकी (निबंध) — सहूल संजुक्त्याच्यां
2. रंगेस (महाकाव्य) — गोविन्द गिरि
3. दिवागी विचार (निबंध) — संधिविशाल संस्कृती
4. हनुमा सीतामंदल — संतलिपिः संस्कृत
5. जौनया "पृथ्वी" और संस्कृत — संतलिपिः संस्कृत

इकाई - 2

1. इदुंगुलु का रहस्य (विज्ञानिक संस्कृति) — कृति, कल्पनारहस्य (संस्कृत निबंध)
2. वस्त्रि वामन वांची आर्य (संस्कृत निबंध) — द्विविद्या राम
Foundation Course: Language English

Paper III

Contact Periods/week: 03

<table>
<thead>
<tr>
<th>Maximum Marks</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. Pass Marks</td>
<td>13</td>
</tr>
<tr>
<td>Internal</td>
<td>10</td>
</tr>
</tbody>
</table>

Distribution of Marks:

1. Four critical questions are to be set from unit I. Two questions are to be attempted. Each question will carry 5 marks. \(5 \times 2 = 10 \).
2. Out of three topics, students are required to write a report on any one topic only. \(1 \times 5 = 5 \).
3. Students are required to attempt 10 questions on Unit III. Each question will carry 1 mark. \(1 \times 10 = 10 \).
4. Students are required to attempt 5 questions on Unit IV. Each question will carry 1 mark. \(1 \times 5 = 5 \).
5. Students are required to attempt 2 questions on Unit V. Each question will carry 5 marks. \(5 \times 2 = 10 \).

UNIT II: Communication & Information Technology.

UNIT III: Report Writing.

UNIT IV: Production of speech sounds, classification of sounds, Transcription.

UNIT V: Common errors in English Words often confused.

UNIT VI: Presentation Skills Drafting a CV
Elective I – Physics

Paper III: Thermodynamics and Statistical Physics

Contact Periods/week: 05 + 4 Practical

Maximum Marks – 60
Min. Pass Marks – 20
Internal – 15 (Theory 10 & Practical 5)
Practical – 25 (External)

Note - At least one question will be set from each unit. 20% of the maximum marks will form simple numerical problems and another 20% would be for objective questions with a provision to provide reasoning. All Questions will have 100% internal Choice.

Objectives: After completion of this course, the students will be able to

1. Acquaint themselves with the concept of ideal and Real gas.
2. Describe historical development of laws of thermodynamics.
3. Appreciate the concept of probability.
4. Develop and understand the statistical basis of thermodynamics.
5. Explain the fundamental difference between classical and quantum statistics.
6. Appreciate the concept of indistinguishability of particles.

Unit-1: Ideal and Real Gases

Brownian motion; estimation of the Avogadro number; specific heat of monatomic gas; extension to di and tri atomic gases; behavior of gases at low temperatures; adiabatic expansion of an ideal gas, applications to atmospheric physics.

Transport phenomenon in gases; mean free path; collision cross sections; estimates of molecular diameter, transport of mass momentum and energy, dependence of mean free path on temperature and pressure.

Real and Van der Waals gas; equation of state; reduced equation of state; nature of Van der Waals forces; comparison with experimental P-V curve; the critical constants gas and vapour; J-T cooling, Boyle temperature and inversion temperature.

Unit-2: Thermodynamic relationships and Liquefaction of gases

Thermodynamic relationships; Thermodynamic variables; extensive and intensive, Clausius-Clapeyron heat equation; thermodynamic potentials and equilibrium of thermo dynamical systems.
Principle of regenerative cooling and of cascade cooling. Equilibration of hydrogen and helium, refrigeration cycles, cooling due to adiabatic demagnetization, production and measurement of very low temperatures.

Unit-3: The Laws of Thermodynamics
The Zeroth law; various indicator diagrams; work done by and on the system; first law of thermodynamics; internal energy as a state function and other applications; reversible and irreversible changes; Carnot cycle and its efficiency; Carnot theorem and the second law of thermodynamics; different versions of the second law; practical cycles used in internal combustion engines; entropy; principle of increase of entropy; The thermodynamic scale of temperature; its identity with the perfect gas scale; impossibility of attaining the absolute zero; third law of thermodynamics.

Unit-4: The Statistical Basis of Thermodynamics
Probability and thermodynamic probability, principle of equal a priori probability, probability distribution and its narrowing with increase in number of particles; the expressions for average properties; accessible and inaccessible states; distribution of particles with a given total energy into a discrete set of energy states. Equilibrium before and after two systems in thermal contact, bridge with macroscopic physics; probability and entropy; Boltzmann canonical distribution law and its applications; law of equipartition of energy.

Unit-5: Maxwellian Distribution of Speeds in an Ideal Gas
Distribution of speeds and of velocities, distinction between mean, rms and most probable speed values, Doppler broadening of spectral lines.
Transition to quantum statistics, ‘\(h \)’ as a natural constant and its implications, cases of particles in a one-dimensional box and one dimensional harmonic oscillator, indistinguishability of particles and its consequences; Bose-Einstein, and Fermi-Dirac statistics; Fermi level and Fermi energy, thermodynamic behaviour of an ideal Fermi gas.

Physics Practical List:
1. To study the characteristics of photovoltaic cell.
2. To simulate the decay probability curve.
3. To determine the mechanical equivalent of heat by Joule’s calorimeter.
4. To verify Newton’s law of cooling.
5. To determine the thermal conductivity of a non-conducting material by Lee’s Disc.
6. To find the temperature of Hot metal bob using calorimeter.
7. To verify the Stefan’s law of radiation by using an incandescent lamp.
8. To determine latent heat of ice.
9. To study thermo e.m.f of Fe-Cu junction.
10. To determine thermal conductivity of rubber tube.
11. To determine specific heat ratio of air by element and calorimeter apparatus.
12. To determine efficiency of an electric kettle.

Suggested readings
- Laud, Introduction to Statistical Mechanics, Macmillan publication.
- F. Reif, Statistical Physics, McGraw-Hill publications.
- Sears & Salinger, Thermodynamics, Kinetic theory and Statistical thermodynamics, Narosa publishing house, New Delhi.
- Thermodynamics and Statistical Mechanics, Lokenathan and Gambhir

Elective I – Botany

Paper III: Diversity of Vascular Plants

Contact Periods/week: 05 + 4 Practical

Maximum Marks – 60
Min. Pass Marks – 20
Internal – 15 (Theory 10 & Practical 5)
Practical – 25 (External)

Note:
Two questions will be set from each unit and students are required to attempt one question from each unit.

Objectives: (i) To provide an understanding of structural and functional organisation of gymnosperms and angiosperms and their evolutionary trends.

(ii) To enable the students to be familiar with diversity of plant habit and their basic body plan.

Unit I - Gymnosperms: General characteristics of gymnosperms and their outline classification. Evolution and diversity of gymnosperms: Origin of seed habit, geological time scale, fossilisation and fossil gymnosperms.

Unit II - Gymnosperms: Morphology of vegetative and reproductive parts, anatomy of root, stem and leaf, reproduction and life cycle of Pinus, Cycas and Ephedra.

[Signatures]

Unit IV - The shoot system:
The shoot apical meristem and its histological organisation. Vascularisation of primary shoot monocotyledons and dicotyledons, formation of interodes, branching pattern; monopodial and sympodial growth. Canopy architecture; cambium and its functions; formation of secondary tissue xylem; a general account of wood structure in relation to conduction of water and minerals; characteristics of growth rings, sapwood and heart wood, role of woody skeleton; secondary phloem - structure-function relationships; periderm.

Unit V - Leaf:
Origin, development, arrangement and diversity in size and shape (leaf morphology) internal structure in relation to photosynthesis and water loss; adaptations to water stress; senescence and abscission.

The root system:
The root apical meristem; differentiation of primary and secondary tissues and their roles; structural modification for storage, respiration and interaction with microbes.

Practical Objectives:

1. To develop the skills of section cutting and double staining of vascular plants.
2. To provide field experiences to students for studying plant habits and basic body plan.

1. Cytas:
(i) Habit, armour of leaf bases on the stem, very young leaf (circinate vernalisation) and old foliage leaves, bulbils, male cone, microsporophyll, Megasporophyll, mature seed.
(ii) Study through slides – normal root (T.S.), stem (T.S.), Ovule (L.S.) microsporophyll.
(iii) Study through hand sections or dissections – coralloid root (T.S.), Raechis (T.S.), leaflet (T.S.).
2. Pinus:

(i) Habit, long and dwarf shoot showing cataphylls and scale leaves. T.S. of wood showing growth rings, male cone, 1st year, 2nd year and 3rd year female cones, winged seeds.

(ii) Study through permanent slides – root (T.S.), female cone (L.S.), ovule (L.S.), embryo (W.M.) showing polycotyledonous condition.

(iii) Study through hand sections or dissections – young stem (T.S.), old stem (wood) (T.L.S. and R.L.S.), needle (T.S.), male cone (L.S.), male cone (T.S.), pollen grains (W.M.).

3. Ephedra:

(i) Habit and structure of whole male and female cones.

(ii) Permanent slides – female cone (L.S.).

(iii) Hand sections/dissections-male (L.S.), internode (T.S.). macerated stem to see vessel structure, epidermal peel mount of vegetative parts to study stomata, male cone (T.S. and L.S.) pollen grains.

4. Study of any commonly occurring dicotyledonous plant (for example Solanum nigrum or Kalanchoe) to understand the body plan and modular type of growth.

5. Life forms exhibited by flowering plants (by a visit to a forest or a garden) Study of tree like habit in cycads, bamboo, banana traveller’s tree (Ravenala madagascariensis) or Yucca and comparison with true trees as exemplified by conifers and dicotyledons.

Scheme of Practical Examination:
1. Section cutting and double staining (Gymnosperms). 5
2. Section cutting and double staining (Angiosperms). 5
3. Preparation of Report on field visit for studying plant habits. 5
4. Comment upon the spots (1-5). 5
5. Practical record. 5
6. Internal evaluation 5

Suggested Readings
- Bhattachar, S.P. and Moitra, A.1996 Gymnosperms, New Age International Ltd.: New Delhi
- Raizada & Sahani, Gymnosperms. FRI Publication

Elective II – Chemistry

Paper III

Contact Periods/week: 05 + 4 Practical

Maximum Marks – 60
Min. Pass Marks – 20
Internal – 15 (Theory 10 & Practical 5)
Practical – 25 (External)

Note: Two questions will be set from each unit and students are required to attempt one question from each unit.

Objectives:
After completing 3rd semester the students should be able to:
(i) make a comparative study of group 13-17 elements and rationalize the importance of comparative study.
(ii) explain the structure and properties of the compounds of p-block elements including noble gas family particularly keeping in view the recent discoveries.
(iii) acquire the knowledge of characteristic properties of transition elements and explain the properties in terms of oxidation states exhibited by the elements.
(iv) compare the chemistry of first, second and third transition series elements and explain the stereo chemistry associated with complexes.
(v) appreciate to learn the theories involved in coordination chemistry and judge their comparative contribution in the study of complexes.
(vi) explain the principles involved in the extraction of elements and correlate this with the thermodynamical principles.

(vii) acquire the knowledge of characteristic properties shown by lanthanides and actinides and utilize the knowledge in the isolation of lanthanides.

(viii) appreciate the similarities between later actinides and later lanthanides.

(ix) construct the knowledge of different theories of acids and bases and judge the wider applicability of Lewis concept.

(x) appreciate to gain knowledge of some non-aqueous solvents like ammonia and liquid sulphur dioxide and compare them with aqueous systems.

Instructional Strategy:

To handle the study of descriptive chemistry, the teacher should highlight the role of structures as they affect the trends in properties. To make the subject matter presentation interesting and lucid in approach, the chemistry associated with the elements be discussed in terms of the trends in oxidation states exhibited by the respective elements. The subject treatment of isolation of elements be highlighted in the framework of thermodynamic principles. The different theories proposed to discuss the coordination compounds be dealt with in terms of their need and limitations. To discuss the acid-base system and the chemistry of non-aqueous solvents the possibility of the use of Ausubel’s Advanced Organizer model should be explored by the teacher.

Unit-I s-Block Elements

Comparative study, diagonal relationships, salient features of hydrides, solvation and complexation tendencies including their function in biosystems, an introduction to alkyls and aryls.

p-Block Elements Part-I

Comparative study (including diagonal relationship) of group 13-17 elements, compounds like hydrides, oxides, oxyacids and halides of group 13-24, hydrides of boron-diborane and higher boranes, borazine, borohydrides.

p-Block Elements Part-II & Chemistry of Noble Gases

Fullerenes, carbides, fluorocarbons, silicates (Structural principle), tetrasulphur tetranitride, oasis properties of halogens, interhalogens. Chemical properties of the noble gases, chemistry of xenon, structure and bonding in xenon compounds.
Unit-II Chemistry of Elements of First Transition Series:
Characteristics properties of d-block elements.
properties of the elements of the first transition series, their binary compounds such as Carbides, Oxides and Sulphides. Complexes illustrating relative stability of their oxidation states, coordination number and geometry. Chemistry of Elements of Second and Third Transition Series:
General characteristics, comparative treatment with their 3d-analogues in respect of ionic radii, oxidation states, magnetic behaviour, spectral properties and stereochemistry.

Unit-III A. Coordination Compounds
Werner’s coordination theory and its experimental verification, effective atomic number concept. chelates, nomenclature of coordination compounds, isomerism in coordination compounds, valence bond theory of transition metal complexes.

B. Oxidation and Reduction

Unit-IV A. Chemistry of Lanthanide Elements:
Electronic structure, oxidation states and ionic radii and lanthanide contraction, complex formation, occurrence and isolation, lanthanide compounds.

ii. Chemistry of Actinides:
General features and chemistry of actinides, chemistry of separation of Np, Pu and Am form U, similarities between the later actinides and the later lanthanides.

Unit-V A. Acids and Bases:
Arrhenius, Bronsted-Lowry, the Lux-Flood, solvent system and Lewis concepts of acids and bases.

B. Non-aqueous Solvents:
Physical properties of a solvent, types of solvents and their general characteristics, reactions in non-aqueous solvents with reference to liquid NH3 and liquid SO2.

Suggested Readings:
2. Lee, J.D., Concise Inorganic Chemistry, ELBS
4. Malik, Madan and Tuli; Modern Inorganic chemistry. S. Chand and Company Ltd.
5. Douglas, Bodie, E., Concepts and Models of Inorganic chemistry
6. Malik, Madan and Tuli; Advanced Inorganic Chemistry S. Chand and Company Ltd.

Practical:

List

1. Semi micro analysis of inorganic mixture containing fine ions including typical combinations, insolubles and interfering ions. Cations: CO\(_3\)\(^{2-}\), CH\(_3\)COO\(^{-}\), NO\(_2\)\(^{-}\), SO\(_3\)\(^{2-}\), S\(_2\)\(^{-}\), F\(^{-}\), Cl\(^{-}\), Br\(^{-}\), I\(^{-}\), NO\(_3\)\(^{-}\), SO\(_4\)\(^{2-}\), PO\(_4\)\(^{3-}\), C\(_2\)O\(_4\)\(^{2-}\); anions: NH\(_4\)\(^{+}\), Ag\(^{+}\), Na\(^{+}\), K\(^{+}\), Pb\(^{2+}\), Hg\(_2\)\(^{2+}\), Hg\(^{2+}\), Cu\(^{2+}\), Cd\(^{2+}\), Bi\(^{3+}\), As\(^{3+}\), Sb\(^{3+}\), Sn\(^{4+}\), Fe\(^{3+}\), Cr\(^{3+}\), Al\(^{3+}\), CO\(_2\)\(^{2+}\), Ni\(^{2+}\), Zn\(^{2+}\), Mn\(^{2+}\), Ba\(^{2+}\), Sr\(^{2+}\), Ca\(^{2+}\), Mg\(^{2+}\).
2. Estimation of hardness water by EDTA method.
4. Estimation of glucose, aniline or phenol.

Scheme

Experiments: Time allotted – 5 hrs

(1) Mixture analysis - 10
(2) Volumetric Estimation - 5
 internal assessment - 5
 Viva - 5

[Signatures]

83
Elective III – Zoology

Paper III

Contact Periods/week: 05 + 4 Practical

Maximum Marks – 60
Min. Pass Marks – 20
Internal – 15 (Theory 10 & Practical 5)
Practical – 25 (External)

Note: Two questions will be set from each unit and students are required to attempt one question from each unit.

Objectives:
To study structure and function of cell, various aspects of genetics, inheritance and evolution.

Unit-1
1. The cell – history of cell biology, cell theory, prokaryotes and eukaryotic cell.
2. Nuclear organization of cell.
3. Extra nuclear organization of cell.

Unit-2
 structural and numerical changes.
2. Mendelian principles of heredity
3. Post Mendelian genetics
4. Sex chromosome system: chromosome theory of sex determination, sex linked inheritance (haemophilia & colour blindness)

Unit-3
1. Linkage & crossing over (theories of linkages, significance of linkage and mechanism of crossing over)
2. Linkage maps
3. Human chromosomes and maps, eugenics (common genetic diseases in man- sickle cell anemia, alkaptonuria and albinism)
4. Euphenics and euthenics.

Unit-4
1. Multiple factors (blood groups)

Signature: [Signatures]
2. Twins - physical and mental traits
3. Cytoplasmic inheritance - maternal effects in Limnea shell coiling

Unit-5
1. Brief account of origin of life on earth
2. Origin of eukaryotic and prokaryotic cells
3. Concept of evolution (micro and macro evolution)
4. Lamarckism, neo-Lamarckism, Darwinism and neo-Darwinism
5. Evidences and mechanism of evolution, species and speciation

PRACTICAL
Objective: to develop skills of identification of cell and its organelles and to gain the ability to recognize aspects of genetic and cytogenetic techniques for understanding the processes of inheritance.

1. Study of prokaryotic and eukaryotic cell through charts and models
2. Demonstration of mitochondria in cheek epithelial cells by Janus green staining
3. Demonstration of mitosis in onion root tip cells
4. Study of meiosis in grass hopper testes
5. Demonstration of Polytene chromosomes in Chironomus/Drosophila larvae
6. Demonstration of Barr bodies in hair root bulb cells and cheek epithelial cells
7. Pedigree analysis through charts and handouts
8. Karyotype analysis through charts and handouts
9. Problem solving of linkage analysis and human blood types

SCHEME OF PRACTICAL EXAMINATION

1. Spotting - 04
2. Temporary Preparation (Exercise-I) - 04
3. Temporary Preparation (Exercise-II) - 06
4. Problem Solving/Karyotype/Pedigree - 04
5. Practical Records - 03
6. Viva-voce - 04

Total - 25 Marks
Internal assessment - 05 Marks
Referred books --:
1. Textbook of cell biology-de Robertis
2. Textbook of cell biology-Karp
4. Textbook of cell biology-Cooper
5. Cell and Molecular Biology- P.K. Gupta
7. Principles of Genetics- Klug and Cummings
9. Genetics and Principles of heredity- Winchester
10. Evolution- Dodson
11. Evolution-Douglas J Futuyma
12. Evolution- V. B. Rastogi
13. Ecology and Evolution- Dalela

Elective III – Mathematics

Contact Periods/week: 05 + 4 Practicum

Maximum Marks – 30+30=60
Min. Pass Marks – 20
Internal – 15 (Theory 10 & Practicum 5)
Practicum – 25 (Internal)

M - 3,1: ADVANCED CALCULUS

NOTE : Two questions will be set from each unit with Internal choice

Objective: To develop understanding of advanced calculus

Unit-II Continuity, sequential continuity. Properties of continuous functions Uniform continuity. Chain rule of differentiability. Mean value theorems and their geometrical interpretations.
Darboux’s intermediate value theorem for derivatives. Taylor’s theorem with various forms of remainders.

Unit -IV Maxima, minima and saddle points of functions of two variables. Lagrange’s multiplier method.

Content as in S.C. Mallick - Mathematical Analysis ; Wiley Eastern Limited

M - 3.2 DIFFERENTIAL EQUATION

NOTE : Two questions will be set from each unit with internal choice

Objectives : To develop understanding of advanced differential equations with Application.

Unit - IV Partial differential equations of the first order, Lagrange’s solution. Some special type of equations which can be solved easily by methods other than the general method. Charpit’s general method of solution.

Content as in:
1. D.A.Murray: Introductory Course in Differential Equation Orient Long Man

M - 3.3 Mathematics Practicum

List of Activities:
- Activity oriented problem solving / Experiments using Mathematical software or computer programming language based on the content studied in semester III Mathematics papers M-3.1 and M-3.2.
- Mathematics seminar.

Education Component:

Curriculum Development

Contact Periods/week: 03

Maximum Marks – 40
Min. Pass Marks – 13
Internal – 10

Objectives
- To understand the concept and principles of curriculum.
- To make the distinction between curriculum and syllabus.
- To understand the bases and determinants of curriculum studies.
- To gain insight into the development of curriculum.
- To appreciate the need for continuous and comprehensive curriculum reconstruction.
- To enable students to understand implementation and evaluation of curriculum.

UNIT-I: Concept of curriculum
- Meaning and nature of curriculum; Need for curriculum in schools.
- Differentiating curriculum framework, curriculum, syllabus and unit; their significance in school education.

N. Paul
P. Gulati
• Curriculum visualized at different levels: National level; State level, school level, class level and related issues.

UNIT-III: Determinants and considerations of curriculum
• Determinants of Curriculum; Socio-political, Cultural, Technical and Economical
• Curriculum considerations:
 a. Educational objectives,
 b. Learners characteristic: Nature of learner, their Socio cultural Context and learning process,
 c. Relevance of stage of schooling
 d. Teachers experiences and concerns,
 e. Environmental concerns,
 f. Gender, Inclusiveness, social sensitivity.

UNIT-III: Curriculum development
• Concept, Need and Scope of curriculum development.
• Strategies of curriculum development.
• Guiding principles of curriculum development.
• Approaches of curriculum development: Administrative approach, Grass root approach, Demonstration approach, System approach.

UNIT-IV: Implementation and Evaluation of Curriculum
• Role of school philosophy and Administration in creating context for curriculum development, Available infrastructure, Curriculum sites, resources (library, laboratory, school playground, neighbourhood etc.
• Teacher’s Role in Curriculum construction, Curriculum Transaction, researching in curriculum.
• Role of a teacher as a critical pedagogue.
• Role of external agencies in providing curriculum and pedagogical supports to teachers within schools-local, regional, national.
• Models of curriculum evaluation: Tyler model, Hilda Tabá.

Sessional Work
• Study of NCF 2005 as well as the earlier school curriculum frameworks
• Discussion on purpose of curriculum framework
• Critical Evaluation of the extend to which the curriculum framework is reflected in the syllabus
• Interaction with school teachers and principal, how they operationalise the prescribed curriculum into an action plan
• How curriculum is evaluated and revised

Mode of Transaction
Lecture, Discussion, debate, Project, Activities etc.

Suggested readings:
• Margaret, K.T. The open Classroom, Orient Longman: New Delhi, 1999.

Reading and Reflecting on Text

Contact Periods/week: 02

Maximum Marks – 50
Min. Pass Marks – 17
Internal – 50

Course objectives
- To engage students closely with text and develop a taste for readings.
- To enable students to read, interpret and reflect on different types of text.
- To enable students to appreciate knowledge present in either English medium textbooks/journals/articles or other available material present in the regional language.
- To facilitate students to self-learning, self-reflection and ability to express their thought in writings or debates and discussion.

Unit: I- Understanding the Text
- Identifying the text as a tool: meaning of text and its form, expression and procedure
• Surveying a text: making notes, understanding how facts, ideas are connected and giving reflections, making inferences
• Role of conceptual and analytical framework in understanding the text

Unit II- Engaging with narrative and descriptive accounts

• Selection of children literature, adult literature and inclusive literature: nature of text and its form, selection of movies, stories, chapters from fiction, autobiographical narratives, historical narratives etc.
• Reading for comprehending and visualizing the accounts (individual and group reading)
• Discussion and debate on characters, context and scenarios and sharing interpretations
• Writing summary, scene, abstract, dialogue, report with key idea in the text

Unit III- Engaging with subject related reference books

• Selection of a problem or issue and articulating guided questions
• Selection of text from various types of resources
• Preparing notes, writing summary and connect it with issues or problems initiated
• Group and individual assignment and presentation on any educational idea/text

Suggested Readings

12. India Untouched: Stories of a People Apart, Feature Documentary by Stalin K.

Community Living

Contact Periods/week: 2 Practical

Maximun Marks – 25
Min. Pass Marks – 08
Internal – 25

Objectives:
1. To provide real-life community experience to the student-teachers.
2. To provide knowledge and skills to conduct various surveys, case studies and interviews.
3. To create awareness on various socio-cultural and environmental issues and problems.
4. To inculcate the value of work in student-teachers.
5. To develop leadership skills among student-teachers.
6. To develop an understanding of sharing of responsibility.
7. To encourage participation in various social activities.
8. To acquaint student-teachers with the real working culture of the village schools.
9. To provide exposure to student-teachers of remote village living.

Activities
Working with Community is a programme to provide the real-life community experience to the student-teachers. It will be organized in camp-mode. The student-teachers have to stay in a village for five days and to work with the community. They will undertake the activities like educational survey, case study, ‘shramdaan’, interviews, visiting schools and other govt. and non-governmental organisations of the village. They will launch door-to-door campaign on various themes, like, girl-child education, literacy, ‘Swachh Bharat Abhiyan’, female foeticide, health and hygiene, cleanliness, save water, organic farming, environmental awareness, etc. Awareness campaign will be launched by organizing cultural activities in the

[Signature]

Scanned by CamScanner
evening. After completion of the camp, the student-teachers have to submit a report of five days.

Modes of Assessment
The student-teachers will be assessed on the basis of their active participation in various activities. Individual and group presentations and report submission.

Art & Aesthetic

Contact Periods/week: 02

<table>
<thead>
<tr>
<th>Maximum Marks</th>
<th>Min. Pass Marks</th>
<th>Internal</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>08</td>
<td>25</td>
</tr>
</tbody>
</table>

COURSE - CONTENT

Unit-1: अनी - विषय स्थायी की समाधान
- कार्यक्रम के लिए मूल्यांकन, प्रकरण, कौशल, कला, पृष्ठभूमि, विकास, एवं/या समस्या का समाधान।
- Historical perspectives/importance: integration of life, culture of India.
- विषय में Art & craft तथा skills, observation, analysis, synthesis, problem solving and evaluation.
- उपलब्धियां: अनुभवकारण/वेबसाइट

Unit-2: नृत्य एवं संगीत कलाएँ
- नृत्य कला का कला, केरिबाला कृष्ण, राधा कृष्ण।
- नृत्य का उपभोक्ता, प्रकार, सामाजिक/कलात्मक हिस्सा। (लाली, लक्ष्मण, बोधी, प्रतीकात्मक)

Unit-5: कलाएं एवं टेक्नोलॉजी का समाधान
- वेबसाइट के Website पर अपलोड/डाउनलोड करना।
- Digitalization of Arts
- कलाएँ की प्रौद्योगिकी, Activity को ICT में ले जाना।
- कलाओं का अभाववृत्तिकरण (ICT से सम्बन्धित)

(Introduction, objectives, activities, assignments, projects, references and web-sites as per II Semester in the context of the above course content)
Bachelor of Science and Bachelor of Education
Rani Durgawati University
COURSES OF STUDIES
For
Four Year Integrated
B.Sc.B.Ed. (Eight Semesters) Course

FOURTH SEMESTER

<table>
<thead>
<tr>
<th>Subject/Paper</th>
<th>Paper</th>
<th>Intern.</th>
<th>Total</th>
<th>Pds./week</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Part: Foundation Course</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comp. & ICT in Education</td>
<td>40</td>
<td>10</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>Language – Hindi</td>
<td>40</td>
<td>10</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>- English</td>
<td>40</td>
<td>10</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>Environmental Education</td>
<td>40</td>
<td>10</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>Elective I + Practical</td>
<td>60+25</td>
<td>15+25</td>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>Elective II + Practical</td>
<td>60+25</td>
<td>15+25</td>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>Elective III + Practical</td>
<td>60+25</td>
<td>15+25</td>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>415</td>
<td>85</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>B.Ed. Part</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inclusive Education</td>
<td>40</td>
<td>10</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>Assessment for learning I</td>
<td>40</td>
<td>10</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>80</td>
<td>10</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Grand Total</td>
<td>495</td>
<td>105</td>
<td>600</td>
<td></td>
</tr>
</tbody>
</table>

- Elective 1 – Physics/ Botany.
- Elective 2 – Chemistry.
- Elective 3 – Zoology/Mathematics

(All electives will have one theory paper and external practical examination except Mathematics where there will be two theory papers and practicum which will be valued internally)
<table>
<thead>
<tr>
<th>Semester Name</th>
<th>Paper Name</th>
<th>Mark</th>
<th>Paper Code</th>
<th>Name of Papers</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV</td>
<td>Paper Theory-VII</td>
<td>30</td>
<td>M-4.1</td>
<td>Elements of Groups And Rings</td>
</tr>
<tr>
<td></td>
<td>Paper Theory-VIII</td>
<td>30</td>
<td>M-4.2</td>
<td>Mechanics</td>
</tr>
<tr>
<td></td>
<td>Internal Test</td>
<td>15</td>
<td></td>
<td>Related To Above Papers</td>
</tr>
<tr>
<td></td>
<td>Practicum</td>
<td>25</td>
<td></td>
<td>Related to Above Papers</td>
</tr>
</tbody>
</table>

B.Sc. Component:

Foundation Course: Computers & ICT in Education – II

Contact Periods/week: 03

Maximum Marks – 40
Min. Pass Marks – 13
Internal – 10

Objectives: On completion of this course, the student teachers will be able to:

- Explain the role of ICT in authentic and alternative assessment,
- Develop e-portfolio and assessment e-rubrics,
- Understand the social, economic, security and ethical issues associated with the use of ICT,
- Appreciate the scope of ICT for improving the personal productivity and professional competencies,
- Demonstrate the use of web conferencing/teleconferencing tools and technologies,
- Appreciate the use of ICT in improving educational administration,
- Explain the emerging trends in Information and communication technology,
- Use ICT for self-directed professional development.

Unit I: ICT for Assessment

- ICT and Assessment
 - Electronic assessment portfolio – Concept and types; e-portfolio tools
 - Creation and use of electronic rubrics for assessment
 - Online and offline assessment tools – Rubrics, survey tools, puzzle makers, test generators, reflective journal, question bank
 - ICT applications for Continuous and Comprehensive Evaluation (CCE)
- Learning analytics and feedback

UNIT II – ICT and Management
- National ICT policies, curriculum and schemes, ICT@Schools, NME-ICT
- Educational technology standards – UNESCO, ISTE, CEMCA and AECT
- ICT for personal management: e-mail, task, events, diary, networking
- ICT for educational administration: Scheduling, record-keeping, student information, electronic grade book, connecting with parents and community
- Managing the ICT infrastructure: Software installation, troubleshooting of hardware, seeking and providing help, storage and backup, updating and upgrading software

Unit III: ICT for Professional Development
- ICT for professional development: Tools and opportunities
- Electronic teaching portfolio: Concept, types, tools: portfolio as a reflective tool for professional development
- Role of ICT in self-directed professional development
- Professional development: Role of teleconferencing, EDUSAT- the Indian experiment; web conferencing tools and techniques
- Technology and design-based research: Pedagogical implications for professional development

UNIT IV: Emerging Trends in ICT Applications
- Pedagogy for e-books and rhizomatic learning
- Innovative pedagogy: Learning design informed by analytics
- Seamless learning – Role of mobile technology
- Ubiquitous computing and its educational promises
- Game based learning and one-to-one computing
- 3-D printing and its educational promises
- Social media for pedagogical innovations
- Threshold concepts and pedagogical applications
- Dynamic Assessment based Pedagogical Practices

Sessional Work
- Creating account in wikispace/Tiki/Cedia/wiki and adding/editing content

Signed: [Signature]

[97]
- LMS experience- hands on various features of LMS - the ICT course may be provided through LMS
- Evaluation of RLO repositories and creating RIO and uploading to repositories
- A critical study of some e-learning courses and enrolling and completing some free e-learning courses
- Field visit to the EDUSAT center and take part in teleconferencing
- Planning and creating digital rubrics for any topic
- Organize web conferencing using Skype/Yahoo Messenger/Google+
- Review of ICT labs (plams and equipments/resources) in school from internet
- Interview of computer hardware engineer/ICT specialist regarding Hardware planning, evaluation, maintenance and up gradation
- Developing an electronic assessment portfolio
- Developing an electronic teaching portfolio
- Readings on emerging ICT trends in education
- Review of national ICT policy and curriculum
- Using FOSS tools for timekeeping, grade sheet
- Creating social bookmarking account and creating social bookmarking of internet resources using any social bookmarking tools (diigo, delicious, stumbleupon, Shelfari)

Suggested readings:
- Athanassios Timoyiannis (Editor) (2011). Research on e-Learning and ICT in Education. Springer: USA
- Coordinators, and Curriculum Leaders. Corwin: New Delhi
• EdD L. Robert Furman (2012). Instructional Technology Tools: A Professional Development Plan
• Jean-Eric Pelet (2014). E-Learning 2.0 Technologies and Web Applications in Higher Education (Advances in Higher Education and Professional Development (Ahepi)). Idea Group; U.S.
• MHRD-GOI (2004 and revised 2010) National ICT @ Schools Scheme, Department of School Education and literacy, MHRD, Govt. of India, New Delhi
• MHRD-GOI (2012) National Mission on Education through ICTs (NME-ICT), Department of Higher Education, MHRD, Govt. of India, New Delhi
• MHRD-GOI (2012) National ICT Policy for School Education, Department of School Education and literacy, MHRD, Govt. of India, New Delhi
• Manju Webband Margaret Cox (2014). Information and Communication Technology- Assessment for Learning in the ICT Classroom (Inside the Black Box). Learning Sciences: US.
• Remus Phelps, Anne Graham. (2013) Technology Together: Whole-School Professional Development for Capability and Confidence. ISTE: USA
• Renn M. Palloff, Keith Pratt (2011) The Excellent Online Instructor: Strategies for Professional Development. Wiley; San Francisco
• Sonny Magana, Robert J. Marzano (2013). Enhancing the Art & Science of Teaching With Technology (Classroom Strategies)
• Steven W. Anderson, Deborah Siegel. (2014). The Tech-Savvy Administrator: How do I use technology to be a better school leader?. ASCD
गुण्ड वर्ग - 45
अध्यापक गुण्ड क्रम - 10
प्रारंभिक अंक निर्देशन

4 साक्षात्विक/प्रोफेशनल प्रश्न - 20 अंक (7 x 4.5)

लघुपद्धति प्रश्न - 07 अंक (25 x 2.5)

यसुनिस्थ प्रश्न - 06 अंक (1 x 5)

इकाई 1.
1. आरोप विवेचना (हिंदी विवेचना) - पाठ्य नागरिक पाठ
2. मूलना का कुंड (एक अरूण क्रम) - मूलना साहि
3. प्राथमिक क्रम कहानियाँ - (संकलित)
4. व्याकरण का लोक साहि

इकाई 2.
1. पुत्रां नागरिक का वांट आज (विद्यार्थी) - व्यापक वांट
2. गीत, और मूलना (हिंदी विवेचना) - (संकलित)
3. व्याकरण (व्याकरण, घड़ा, व्यंगय) - (संकलित)
4. व्याकरण का विभाजक, रूपनिष्ठ मूलक्षण एवं व्याकरण क्रम - (संकलित)

इकाई 3.
1. जनसंख्या के माध्यम से, विद्वान के दोहें मौहित्य - (संकलित)
2. व्याकरण की प्रक्रियाएं आयाम
3. सामान्य भाषा हिंदी
Foundation Course: Language English

Paper IV

Contact Periods: 03

Max. Marks – 40
Min. Pass Marks – 13
Internal – 10

Distribution of Marks:
1. Four critical questions are to be set from unit I. Two questions are to be attempted. Each question will carry 5 marks. 5 × 2 = 10. Marks.
2. Students are required to write a piece of an unseen passage. 5 × 1 = 5. Marks.
3. Students are required to translate a passage from English to Hindi and a passage from Hindi to English. Each passage which is to be translated will carry 5 marks. 5 × 2 = 10. Marks.
4. Students are required to attempt 7 questions on Unit IV. Each question will carry one mark. 7 × 1 = 7.
5. Students are required to attempt 2 questions from Unit V. Each question will carry 4 marks. 4 × 2 = 8.

UNIT I: C. Rajagopalachari – Three questions; C.P. Soron – Ramamujan; Roger Rosenblatt – The power of W.E: Desmond Morris - A short extract from the Naked Ape; O Henry – The Gift of Magic Ruskin Bond – The Cherry Tree

UNIT II: Precis Writing

UNIT III: Translation – English to Hindi, Hindi to English.

UNIT IV: Proverbs in English, Punctuation

UNIT V: Communication - Communication through Media

Conversations:
I. Introducing yourself & others
II. Expressing opinions, likes & dislikes
III. Making requests & offers
IV. Beginning a conversation
V. Asking the way
VI. Expressing doubts & uncertainties
VII. Talking about future events.
Foundation Course: Environmental Education

Paper 1

Contact Periods/week: 03

Maximum Marks – 40
Min. Pass Marks – 13
Internal – 10

Distribution of Marks:
All five units are compulsory. Two questions to be set from each unit, one to be attempted.

Objectives:
(i) To provide an understanding to the students about basic aspects of the environment and its concerns.
(ii) To generate awareness about the social issues of the environment.
(iii) To enable the students to analyse, evaluate and draw inferences about problems and concerns related to environment.
(iv) To create awareness about the legal framework for protection of environment and wild life.

Unit I: The multidisciplinary nature of Environmental Studies: Definition, Scope and importance; Need for Public awareness. Natural resources: Renewable and Non-renewable resources and associated problems. Forest resources: Use and over exploitation, deforestation, case studies, Timber extraction, mining, dams and their effects on forests and tribal people.

Unit II: Water resources: Use and over utilization of surface and ground water, floods, Drought, conflicts over water resources; dams – benefits and problems. Minerals resources: Use and over exploitation, Environmental effects of extracting and using mineral resources; case studies.

Unit III: Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agricultural techniques fertilizer and pesticide problems, water logging and salinity; case studies. Energy resources: growing energy needs renewable and non-renewable energy resources and use of alternative energy sources – case studies. Land resources: Land as resource, land degradation, man induced landslides. Soil erosion and desertification. Role of an individual in conservation of natural resources. Equitable use of resources for sustainable lifestyles.

Unit V: Environmental Acts: Environmental Protection Act; Air (prevention and control of Pollution Act); Water (prevention and control of pollution Act.; Wildlife protection Act; Forest conservation Act; Issues involved in enforcement of environmental legislation; Public awareness; Human rights. Value education, HIV/AIDS. Women and Child welfare; Role of Information Technology in environment and human health – case studies.

Elective I – Physics

Paper IV: Oscillations, Waves and Optics

Contact Periods/week: 05 + 4 Practical

Maximum Marks = 60
Min. Pass Marks = 20
Internal = 15 (Theory 10 & Practical 5)
Practical = 25 (External)

Note: At least one question will be set from each unit. 20% of the maximum marks will form simple numerical problems and another 20% would be for objective questions with a provision to provide reasoning. All Questions will have 100% internal Choice.

Objectives: After completion of this course, the students will be able to

1. Explain the phenomena pertaining to the concept of waves, their relationship with various forms and wave propagation.
2. Explain formation of images and various defects of images.
3. Discuss the phenomena of interference, diffraction and polarization.
4. Design experiments to observe different optical phenomena and relate them with daily life.

Unit-1: Oscillations

Free Oscillations of simple system; small oscillation approximation solutions; damped oscillation, forced oscillation and resonance; linear and transverse oscillations of a mass between two springs; Diatomic molecule; reduced mass concept.
Free oscillations of system with two degree of freedom; normal modes, longitudinal and transverse oscillation of coupled masses and energy transfer between modes.
Waves in media: propagation of longitudinal waves in an elastic solid and in a fluid.

Unit-2: Geometrical Optics

Fermat's Principle: principle of extremum path, general theory of image formation; cardinal points of an optical system, general relationships, thick lens and lens combinations; Lagrange equation of magnification, telephoto lenses, matrix method in paraxial optic-thin lens formula, comparison between Huygens and Ramusden eyepiece.
Aberration in images: Chromatic aberration, achromatic combination of lenses in contact and separated lenses, Monochromatic aberrations and their reductions, the aplanatic points of a sphere and other applications, aspherical mirrors, oil immersion objectives, meniscus lens.

Unit-3: Wave Optics & Interference

Interference of Light: the principle of superposition, n slit interference, spatial and temporal coherence, optical path retardations, lateral shift of fringes, localized fringes, thin films, Newton's rings and its application. Michelson interferometer, its application for precision determination of wavelength, wavelength difference and width of spectral lines.

Unit-4: Fresnel Diffraction and Fraunhofer diffraction

Fresnel diffraction: Fresnel half-period zone, plate, straight edge and rectilinear propagation.
Fraunhofer diffraction: Diffraction at single slit, double slit and N slit (diffraction grating), blazed grating, diffraction at a circular aperture and a circular disc.

Unit 5: Resolving Power and Polarization

Resolution of images, Rayleigh criterion, resolving power of telescope, grating and prism.
Double refraction and optical rotation: Refraction in uni-axial crystals, its theory, Phase retardation plates; Nicol Priso; rotation of plane of polarization, origin of optical rotation in liquid and in crystals; optical activity; production and detection of linearly and circularly polarised light; Fresnel theory; Faraday rotation; Lorentz half shade polarimeter.

Physics Practical List

1. To determine the wavelength of laser light by gratings.
2. To determine radius of curvature of given plano convex lens by Newton's ring apparatus.
3. To determine wavelength of different colours by using transmission grating.
4. To verify Newton's law of combination of lenses by Nodal light assembly.

Signed: [Signature]

[Signature]

[Signature]
5. To study the optical rotation by cello tape.
6. To determine the specific rotation of sugar using Laurent’s half shade polarimeter.
7. To determine Brewster’s angle for a glass surface.
8. To determine resolving power of a telescope.
9. To determine the refractive index of water by Boy’s method.
10. Find the frequency of ac mains by melda’s apparatus.
11. To determine the wavelength of sodium light by Michelson Interferometer.
12. To detect linearly, circularly and elliptically polarizes light using Babinet compensator.
13. To find the Cauchy’s constant for the material of given prism.

Suggested Reading:
1. Ghani, Physical Optics
2. Sears and Zemanaski, Optics and Atomic Physics
4. Waves and Vibration, J. Pain

Elective I – Botany

Paper IV: Genetics and Biotechnology & Economic Botany

Contact Periods/week: 05 + 4 Practical

Maximum Marks – 60
Min. Pass Marks – 20
Internal – 15 (Theory 10 & Practical 5)
Practical – 25 (External)

Note: Two questions will be set from each unit and students are required to attempt one question from each unit.

Objectives: To enable the students to analyse patterns of inheritance, structural and functional aspects of genes and their application in the study of biotechnology to enable student to know use of plant for human welfare

Unit I
Mendelian genetics: Mendel’s is law of inheritance, linkage and crossing over, allelic and non-allelic interactions.
Gene expression: Structure of gene, transfer of genetic information, genetic code, ribosomes transcription, translation, protein synthesis, regulation of gene expression in prokaryotes and eukaryotes, proteins, 1D, 2D and 3D structure.

Unit II
Genetic variation: Mutations – spontaneous and induced, transposable genetic elements, DNA damage and repair Extraneous genomic: Presence and function of mitochondrial and plastid DNA; plasmids.

Unit III
Genetic engineering:
Tools and techniques of DNA recombinant technology, cloning vectors, genomic and cDNA library, techniques of gene mapping and chromosome walking.

Unit IV

Unit V

<table>
<thead>
<tr>
<th>Food Plants</th>
<th>Rice, Wheat, Maize, Potato, Sugarcane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibers</td>
<td>Cotton and Jute</td>
</tr>
<tr>
<td>Vegetable Oils</td>
<td>Groundnut, Mustard and Coconut</td>
</tr>
<tr>
<td>General account of sources of firewood, timber and bamboo</td>
<td>General account</td>
</tr>
<tr>
<td>Spices</td>
<td>Tea and Coffee</td>
</tr>
<tr>
<td>Beverages</td>
<td></td>
</tr>
<tr>
<td>Medicinal Plants</td>
<td></td>
</tr>
</tbody>
</table>

Practical

Objectives:

i) To develop the skills for the preparation of inheritance pattern.

ii) To impart the skills of isolation of DNA

iii) To familiarize the students with the technique of micro propagation and isolation of protoplast.

iv) To study identify plant for human welfare.

Genetics

1. Working out the laws of inheritance using seed mixtures/flowers.
2. Working out the mode of inheritance of linked genes from test cross and/or F2 data.
3. Isolation of DNA from plant material.
4. Isolation of protoplasts from different plant tissues.
5. Demonstration of the technique of micro propagation.
6. Identification of plant and their used in human welfare

Max. Marks: 25+5=30

Time: 3 hrs.
1. Demonstration of techniques of micro propagation.
2. Isolation of protoplast from different tissues.
3. Demonstration of Mendel’s laws of inheritance.
4. Comment upon the spots. (1-5)
5. Practical Record/Sessional
6. Internal evaluation
4. Viva-voce
5. Sessional and practical record.

Suggested Readings
USA
Publishing, Fort Worth USA.
Biology of Cell, Garland Publishing Co. Inc. New York, USA
York
Elective II – Chemistry

Paper IV

Maximum Marks – 60
Min. Pass Marks – 20
Internal – 15 (Theory 10 & Practical 5)
Practical – 25 (External)

Note: Two questions will be set from each Unit and the candidates will be required to attempt one:

Objectives:
After completing this semester the students should be able to:

(i) acquire the knowledge of basic terms involved in thermo-dynamics and assess their significance in study of the thermodynamics.

(ii) develop the mathematical form of first law of thermodynamics from law of conservation of energy and appreciate the application of this law in Joule-Thompson effect and various thermo chemical laws.

(iii) develop the concept of entropy by Carnot cycle and examine it as a criteria of spontaneity and equilibrium.

(iv) Comprehend the concept of free energy change and chemical potential and correlate the free energy change with feasibility of any physical and chemical process.

(v) Judge the importance of Clusius-Clapeyron equation in the study of various processes.

(vi) Understand Gibb’s phase rule equation and apply this equation to one component and two component systems.
(vii) Get acquaintance with the importance of critical solution temperature for some partially miscible liquids.

(viii) Correlate electrical conductance with various parameters that affect this and learn the application of conductivity measurement in determining certain important physical parameters.

(ix) Visualize the difference between reaction velocity and mechanical velocity and appreciate to learn the techniques to determine the reaction velocity.

(x) Correlate reaction rate and temperature and carefully examine the development of some theories based on this correlation.

Instructional Strategy:

In teaching thermodynamics the teacher should make a conscious effort to convey the importance of mathematical modeling of concepts in physical sciences. Intentional cognitive conflict at times may also be used as a teaching strategy particularly in the transaction of Joule-Thomson effect. The use of concept attainment model may be practiced while discussing various enthalpies. The use of inductive and deductive approach may be practiced in dealing with the Le-Chatelier Principle. Use of ICT may be made in the transaction of phase equilibrium. The practice of experimental approach may be highlighted while discussing: Distribution Law, conductance and its applications and ascertaining the kinetic parameters of some reactions cooperative learning may be practiced in dealing with chemical equilibrium.

Unit I Thermodynamics – I

Definition of thermodynamic terms: system, surroundings etc. Types of systems: intensive and extensive properties. State and path functions and their differentials. Thermodynamic process. Concept of heat and work.

First Law of Thermodynamics: statement, definition of internal energy and enthalpy. Heat capacity, heat capacities at constant volume and pressure and their relationship. Joule’s law- Joule-Thomson coefficient and inversion temperature. Calculation of w., q., dU, q,dH for the expansion of ideal gases under isothermal and adiabatic conditions for reversible process.

Unit II: Thermodynamics - II

(A) Second law of thermodynamics: need for the law, different statements of the law. Carnot cycle and its efficiency, Carnot theorem. Thermodynamic scale of temperature. Concept of entropy: entropy as a static function, entropy as a function of V & T, entropy as a function of P & T, entropy change in physical change, Clausius inequality, entropy as a criteria of spontaneity and equilibrium. Entropy change in ideal gases and mixing of gases.

Third law of thermodynamics: Nernst heat theorem, statement and concept of residual entropy, evaluation of absolute entropy from heat capacity data. Gibbs and Helmholtz functions: Gibbs function (G) and Helmholtz function (A) as thermodynamic quantities, A & G as criteria for thermodynamic equilibrium and spontaneity, their advantage over entropy change. Variation of G and A with P, V and T.

(B) Chemical Equilibrium

Equilibrium constant and free energy. Thermodynamic derivation of law of mass action. Le Chatelier’s principle. Reaction isotherm and reaction isochore-Clausius-Clapeyron equation and Clausius – Claytron equation, applications.

UNIT III: Phase Equilibrium

Statement and meaning of the terms – phase, component and degree of freedom, derivation of Gibbs phase rule, phase equilibria of one component system – water, CO2 and S systems. Phase equilibria of two component system – solid-liquid equilibria, simple eutectic – Bi-Cd. Pb- Ag systems, desilverisation of lead.

Solid solutions – compound formation with congruent melting point (Mg-Zn) and incongruent melting point, (NaCl-H2O), (FeCl3-H2O) and CuSO4·H2O) system. Freezing mixtures, acetone-dry ice.

UNIT IV: Electrochemistry

Electrical transport-conduction in metals and in electrolyte solutions, specific conductance and equivalent conductance, measurement of equivalent conductance, variation of equivalent and specific conductance with dilution.

Migration of ions and Kohlrausch law, Arrhenius theory of electrolyte dissociation and its limitations, weak and strong electrolytes, Ostwald's dilution law its uses and limitations Debye-Hückel-Onsager's equation for strong electrolytes (elementary treatment only). Transport number, definition and determination by Hittorf method and moving boundary method. Applications of conductivity measurements: determination of degree of dissociation, determination of K_a of acids, determination of solubility product of a sparingly soluble salt, conductometric titrations.

Concentration cell with and without transport, liquid junction potential, application of concentration cells, valency of ions, solubility product and activity coefficient, potentiometric titrations.

UNIT V: Chemical Kinetics

Definition of rate of reaction, factors influencing the rate of a reaction-concentration, temperature, pressure, solvent, light and catalyst. Reaction order, mathematical expression for zero order, first and second orders. Determination of order of reactions-half-life, differential, integration and isolation methods. Radioactive decay as an example of first order reaction. Experimental methods of kinetics: conductometric, potentiometric and spectrophotometric.
Simple collision theory, expression for the rate constant (without derivation). Transition state theory based on thermodynamic equilibrium. Expression for rate constant involving equilibrium.

Suggested Readings for Semester IV
1. Glastone, S., Chemical Thermodynamics East - West Publication
2. Glastone, S., Physical Chemistry – East – West Publication
5. Gunadeep Raj, Advanced Physical Chemistry Goel Publication
7. Rakeshit, P.C., Physical Chemistry New Age International
8. Laidler, K.J., Chemical Kinetics T.M.H Publication

CHEMISTRY PRACTICALS

1. Determination of transition temperature of given solid by thermometric method.
2. To determine the solubility of benzoic acid in water at different temperatures and to determine H of dissolution process.
3. To determine the strength of given acid conductometrically using given standard alkali solution.
4. To determine ionization constant of weak acid conductometrically.
5. To determine solubility and solubility product of sparingly soluble salt conductometrically.
6. To study the rate constant of hydrolysis of ethyl acetate catalysed by H⁺ ion at room temperature.
7. To compare the strength of HCl and H₂SO₄ by studying kinetics of hydrolysis of ethylacetate.
8. Determination of rate constant of inversion of cane sugar in presence of an acid using polarimeter.
9. Determination of order of saponification of ester with NaOH.
10. Determination of strength of acid by potentiometric titration.
11. Determination of partition coefficient of I₂ in water and chloroform.
12. Determination of enthalpy of neutralization of weak acid/weak base vs. strong acid/strong base to determine the enthalpy of ionization of weak acid/weak base.
Semester IV
Two experiments are to be done by the examinee each containing 7/12 marks.
Experiments: 15
Internal assessment: 5
Viva: 5

Elective III – Zoology

Paper IV: LABORATORY TECHNIQUES AND MOLECULAR BIOLOGY

Maximum Marks: 60
Min. Pass Marks: 20
Interval: 15 (Theory 10 & Practical 5)
Practical: 25 (External)

Contact Periods/week: 05 + 4 Practical

Objective – To understand the molecular basis of inheritance & development of phenotype to utilize it as bacteriological tool and study the usage & application of lab techniques.

Unit-1.
1. Cell fractionation, different types of centrifuges.
3. Principles and types of Chromatography & Electrophoresis.
4. Histology (Concepts, principles, types of microtome & their uses).
5. General idea of some common fixatives, stains and reagents.
6. pH – Definition, study of pH-meter, determination of pH.

Unit-2.
1. Structure and types of Nucleic acid (DNA & RNA).
2. Concept of genes, genome & proteome.
3. Nucleosome concept (solenoid model), split genes overlapping genes, pseudo genes.
4. Concept of DNA replication and repair (Eukaryotic & Prokaryotic)
5. Types, causes & effects of Mutation.

Unit-3.
1. Transcription (in Prokaryotes & Eukaryotes).
2. Translation in Prokaryotes & Eukaryotes.

Time alloted: 5 hrs

Unit-4
1. Techniques used in recombinant DNA technology
2. Uses of vectors, linkers, adaptors, & genetic library

Unit-5
1. Polymerase chain reaction.
2. Gene therapy.
3. DNA fingerprinting.
4. Animal cell and tissue culture and their applications.

PRACTICAL
Objective - To develop skills to use common laboratory instruments to analyse cellular & biochemical processes & products and identification of molecular events of inheritance along with vehicles of heredity.
Identification of spots related to theory.
1. Study of DNA and RNA through charts and models.
2. DNA isolation.
3. DNA staining.
4. Quantification of DNA by DPA.
5. Quantification of RNA by Orcinol.
6. Culture of bacteria.
7. Restricting growth of bacteria in culture.
10. Visit to nearest pathology/UTD for exposure to instruments like RT-PCR, ELISA

SCHEME OF PRACTICAL EXAMINATION
1. Spotting
2. Molecular Biology/Bacteriology Experiments
3. Chromatography/Histological Staining
4. Practical Records and Tour report
5. Viva-voce

[Signatures]
Referred books -:
1. Experimental Biochemistry- Wilson & Walker
2. Bioinstrumentation-Boyer
3. Molecular Biology –Dravid Frifelder
6. Biotechnology – B.D.Singh
7. Biotechnology – R.C.Dubey

Elective III – Mathematics

Maximum Marks – 30+30=60
Min. Pass Marks – 20
Internal – 15 (Theory 10 & Practicum 5)
Practicum – 25 (Internal)

M – 4.1 ELEMENTS OF GROUPS AND RINGS

Time : 3 Hrs. Max. Marks : 30
Pass Marks : 12

NOTE : Two questions will be set from each unit with Internal choice.

Objectives : To develop understanding of Groups, Sub – Groups and Rings

Unit – I Definition of a group with examples and simple properties, subgroups, Generator of groups, cyclic groups

Unit – II Coset decomposition, Lagrange’s theorem and its consequences, Fermat’s and Euler’s theorems.

Unit –III Homomorphism and Isomorphism, Normal-subgroups, Quotient groups, the fundamental theorem of Homomorphism.

Unit – IV Permutation groups, Even and Odd permutations, the alternating group, Cayley’s theorem.

Unit – V Introduction to rings, subrings, Integral Domains and Fields, characteristic of a ring.

Content as in
1. I.N. Heistein - Topics in Algebra wiley Eastern limited
2. John B Fraleigh, A First Course in Abstract Algebra, Pearson
M – 4.2 MECHANICS

NOTE: Two questions will be set from each unit with internal choice

Objectives:
- To develop understanding of dynamics of a particle
- To develop the skill of solving two problems dealing with forces in space.
- To develop understanding of motion in resisting medium
- To develop the understanding of the dynamics of rigid bodies.
- To develop the understanding of the dynamics of a particle involving varying mass.

Unit – I Analytical conditions of equilibrium of coplanar forces. Virtual work.
Unit – II Velocities and accelerations along radial and transverse directions, and along tangential and normal directions.
Unit – III Catenary, Simple harmonic motion, Elastic strings.
Unit – IV Stable and unstable equilibrium, Poinsot’s central axis.
Unit – V Forces in three dimensions, Motion in a resisting medium. Motion of particles of varying mass.

Content as In:
1. S.L. Loney Statics Mc Millan & Co
2. S.L. Loney Dynamics

M – 4.3 Mathematics Practicum

Max Marks: 25
Pass Marks: 10

List of Activities:
- Activity oriented problem solving / Experiments using Mathematical software or computer programming language based on the content studied in semester IV. Mathematics papers M-4.1 and M-4.2.
- Mathematics seminar.
Education Component:

Inclusive Education

Contact Periods/week: 03

Maximun Marks – 40
Min. Pass Marks – 13
Internal – 10

Objectives

On completion of this course the students will be able to:

- Develop sensitivity towards Inclusive Education,
- Understand the concept, need and scope of Inclusive Education,
- Understand the philosophical and historical perspectives of Inclusive Education,
- Understand the implication of inclusive education on Education for All movement,
- Understand the global and national commitments towards Inclusive Education,
- Develop a critical understanding of the recommendations of various committees/commissions/policies/schemes towards teacher preparation for inclusive school,
- Identify, analyze and utilize various instructional strategies for Inclusive Schools,
- Identify and utilize existing resources for promoting inclusive practices,
- To develop positive attitude and sense of commitment towards actualizing the Right to Education of all learners,
- Examine the issues of identity and diversity in society in general and education in particular,
- Understand as how to seek parental commitment and NGOs support for utilizing available resources for education in Inclusive Schools, and
- understand the nature, needs and functional assessment of learners with reference to diverse needs and how to create conducive teaching-learning environment in Inclusive Schools.

UNIT1: Introduction and Initiatives Taken for Inclusive Education

- Concept, need and scope of Inclusive Education.
- Philosophy of Inclusive Education.
- Education of All Movement and Inclusive Education (A journey from segregation to inclusion)
• The Universal Declaration of Human Rights (1948) and the UN Convention on the Rights of the Child (CRC),
• Salamanca Statement and Framework for action on Special Needs Education (UNESCO, 1994)
• The National Policy of Education (1986),
• The Persons with Disabilities (Equal Opportunities, Protection of Rights and Full Participation) Act 1995, and RCI Act,
• Sarva Shiksha Abhiyan, RMSA and Inclusive Education.

UNIT II: Creating an Inclusive School
• Index of Inclusion—culture, policy and practice
• Removal of Barriers for effective learning in inclusive school
• Factors for successful inclusion, features of an inclusive school, role and functions of regular classroom teachers and resource teachers in an inclusive school.
• How an inclusive environment is created by the teachers in school? Support services required in an inclusive school.
• Role of parents, community, school functionaries and NGOs in Inclusive Education.

UNIT III: Diversity in the Classroom
• Diversity and inclusion, whole school scenario with reference to diversity, diversity in the classroom.
• Nature and needs of learners with diverse needs in inclusive setting with reference to learners with
 • Visual, hearing, locomotor and neuromuscular impairments,
 • Cerebral palsy, intellectual impairment and learning disabilities,
 • Multiple and other disabilities (Autism spectrums disorder, behavioral, emotional and speech disorder, ADD and ADHD, Learners with special health problems.
 • Environmental/ ecological difficulties and learners belonging to other marginalized groups.

UNIT IV: Teaching in Inclusive School
• Adaptation in instructional objectives and curricular activities for meeting diverse needs of learners in inclusive school
• Need for flexible evaluation system and alternate assessment. Instructional strategies (challenges in teaching all children, assessing instructional needs)
• Multi-methodology, multicultural approaches, differential instruction, collaborative learning and system approach, competencies required for the teachers in inclusive schools.
• Assistive Devices and Strategies for meeting learning needs of diverse learners

Modes of Transaction:
Lecture-cum-discussion, group work, field visits of schools/NGOs and the Institutions working in the education of learners with diverse needs to get first hand exercise on Inclusive practices, library studies and project works.

Sessional Work
The students may take any two of the following activities
• Field visits to schools/ Institutions/ NGO promoting education of learners with diverse needs in inclusive settings and have discussions with the teachers/ functionaries and make observation and analysis of teaching learning practices there.
• Analysis of policy documents related to inclusive education.
• Make a list of existing resources in the local area and discuss the use and limitations based on survey of schools with reference to Inclusive practices.
• Study of TLM and equipments used in the education of learners with diverse needs.
• Conduct suitable action research in an inclusive setting.
• Conduct a survey on the type of supportive services needed for inclusion of learners with special needs.
• Preperation and implementation of IEP or case studies.

Suggested Books:

• Deiner, L. Penny, (2010), Inclusive Early Childhood Education 5th Ed; Wadsworth Cengage learningBelmont, CA USA

• Index of Inclusion (2014) NCERT, New Delhi.

• Lowenfeld, B (1973) (Ed) The Visually Handicapped Child in School New York: Ikon Day

• National Pulley of Education 1986 (revised 1992)

• Rao, Indumati et al. (2011) Moving away from Label. Bangalore CBR NETWORK (south asia)
• Rehabilitation Council of India Act 1992
• Rehabilitation Council of India Act 2005 Annual Report
• Right to Education Act 2009
• RMSA (2009) for detail www.rmsa.nic.in
• SSA (2002) for detail www.ssa.nic.in

Assessment for Learning I

Contact Periods/week: 03

Maximum Marks – 40
Min. Pass Marks – 13
Internal – 10

Objectives: On completion of this course the students will be able to:

• Understand the nature of assessment and evaluation and their role in teaching learning process.
• Understand the perspectives of different schools of learning on learning assessment
• Realise the need for school based and authentic assessment
• Examine the contextual roles of different forms of assessments in schools
• Understand the different dimensions of learning and the related assessment procedures, tools and techniques
• Develop assessment tasks and tools to assess learners’ performance
• Analyse, manage and interpret assessment data
• Analyse the reporting procedures of learners’ performance in schools
• Develop indicators to assess learners’ performance on different types of tasks
• Examine the issues and concerns of assessment and evaluation practices in schools

[Signatures]

Scanned by CamScanner
• Understand the policy perspectives on examinations and evaluation and their implementation practices
• Traces the technology bases assessment practices and other trends at the international level

UNIT-I: Perspectives on Assessment and Evaluation
• Meaning of Assessment, Measurement, Tests, Examination, and Evaluation and their interrelationships
• Concept of different types of Assessment: Assessment – of Learning; for learning; as Learning and in Learning
• Principles of Assessment and Evaluation
 o Behaviourist, Cognitivist and Constructivist
• Purposes of Assessment: Monitoring of Learning, Providing Feedback, Promotion, Placement, Certification, Grading and Diagnostic.

UNIT-II: Assessment in school
• Need for continuous, formative and diagnostic assessment Classification of assessment based on
 o Purpose: prognostic, formative, diagnostic and summative
 o Scope: teacher made, standardized
 o Attribute measured: achievement, aptitude, attitude, etc.
 o Nature of interpretation: norm referenced, criterion referenced
 o Context: internal, external
• Need for Continuous and Comprehensive Assessment
• Grading: Concept, Types and Application

• Question bank, Grading system, Online Examination, Open Book Examination, Credit System, Exam on Demand (meaning & uses only)
• Performance based assessment
• Assessment through Rubrics
• Portfolio Assessment

UNIT-IV: Elementary Statistics
• Nature of Data: grouped and Ungrouped
• Organization and presentation of Data: Bar diagram, histogram, polygon, ogive, and Pie Chart
• Measure of central tendency: Mean, Median and Mode
• Measure of dispersion: Range, Quartile Deviation, Mean Deviation, and standard deviation
• Concept of Correlation: Rank order correlation

Sessional Work
• Develop a Power Point Presentation on the current practices of Assessment and Evaluation at the Upper Primary Stage
• Analyse the question papers of the subject of your choice (Previous-3 Years)
• Classes X and XII (any board) in the light of new approach of assessment
• Develop a question paper for upper primary and secondary stage to assess all the aspects of language learning using ICT as a tool.
• Planning of an achievement test
• Planning of other assessment tools
• School visits followed by presentation on evaluation practices in schools
• Data processing and interpretation of any achievement test of school students.

Suggested readings
Four Year Integrated

B.Sc.B.Ed. (Eight Semesters) Course

FIFTH SEMESTER

<table>
<thead>
<tr>
<th>Subject/Paper</th>
<th>Paper</th>
<th>Intern.</th>
<th>Total</th>
<th>Pds./week</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Part:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foundation Course</td>
<td>40</td>
<td>10</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>Entrepreneurship Dev.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective I + Practical/m</td>
<td>60+25</td>
<td>15</td>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>Elective II + Practical/m</td>
<td>60+25</td>
<td>15</td>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>Elective III + Practical/m</td>
<td>60+25</td>
<td>15</td>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>295</td>
<td>55</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td>B.Ed. Part</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P.C.- I: Physical Science</td>
<td>60</td>
<td>15</td>
<td>75</td>
<td>5</td>
</tr>
<tr>
<td>P.C.-II: Bio/Maths</td>
<td>60</td>
<td>15</td>
<td>75</td>
<td>5</td>
</tr>
<tr>
<td>Assessment for Learning II</td>
<td>40</td>
<td>10</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Basics in Education</td>
<td>40</td>
<td>10</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>200</td>
<td>50</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Grand Total</td>
<td>495</td>
<td>105</td>
<td>600</td>
<td></td>
</tr>
</tbody>
</table>

- Elective 1 – Physics/Botany.
- Elective 2 – Chemistry.
- Elective 3 – Zoology/Mathematics

(All electives will have one theory paper and external practical examination except Mathematics where there will be two theory papers and practicum which will be valued internally.)
<table>
<thead>
<tr>
<th>Semester Name</th>
<th>Paper</th>
<th>Mark</th>
<th>Paper Code</th>
<th>Name of Papers</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV</td>
<td>Paper Theory-IX</td>
<td>30</td>
<td>M-5.1</td>
<td>Real And Complex Analysis</td>
</tr>
<tr>
<td></td>
<td>Paper Theory-XI</td>
<td>30</td>
<td>M-5.2</td>
<td>Abstract Algebra</td>
</tr>
<tr>
<td></td>
<td>Internal Test</td>
<td>15</td>
<td></td>
<td>Related To Above Papers</td>
</tr>
<tr>
<td></td>
<td>Practicum</td>
<td>25</td>
<td></td>
<td>Related to Above Papers</td>
</tr>
</tbody>
</table>

B.Sc. Component:

Foundation Course: Entrepreneurship Development - 1

Contact Periods/week: 03

Maximum Marks: 40
Min. Pass Marks: 13
Internal: 10

Unit I: Entrepreneurship

Definition, Characteristics and importance, Types and functions of an entrepreneur.

Unit II: Motivational factors of entrepreneurship.

(a) Motivation to achieve targets and establishment of ideas. Setting targets and facing challenges. Resolving problems and creativity. Sequenced planning and guiding capacity. Development of self-confidence.

(b) Communication skills, Verbal & Non Verbal Communication, Capacity to influence, Modern Techniques of Communication.

Unit III:

(a) Project Report - Evaluation of selected process. Detailed project report - Preparation of main part of project report pointing out necessary and viability.

(b) Selecting the form of Organisation – Meaning and characteristics of sole Proprietorship, Partnership and cooperative committees, elements affecting selection of a form of an organisation.

(c) Economic management – Role of banks and financial institutions, banking, financial plans, working capital-evaluation and management, keeping of accounts.

Unit IV:

(a) Production management. Methods of purchase of Raw Materials.

Elective I – Physics

Paper V: Solid state Physics and Quantum Mechanics

Contact Periods/week: 05 + 4 Practical

Maximum Marks – 60

Min. Pass Marks – 20

Internal – 15 (Theory 10 & Practical 5)

Practical – 25 (External)

Note- At least one question will be set from each unit. 20% of the maximum marks will form simple numerical problems and another 20% would be for objective questions with a provision to provide reasoning. All Questions will have 100% internal Choice

Objectives

After the completion of this course, the students will be able to:

1. Understand amorphous and crystalline solids and various types of crystal structures.
2. Derive expressions for packing fractions of simple cubic, body centered cubic and face centered cubic lattices as well as their coordination numbers.
3. Understand the use of X-rays in studying the crystal structures.
4. Understanding various types of bonding in solids as well as calculate the binding energy of ionic crystals.
5. Understand the concept of lattice vibrations, phonons and specific heat of solids.
6. Understand Einstein and Debye’s theory of specific heat of solids.
7. Understand electrical phenomena in solids and the role of quantum mechanics to study the electronic transport in metals, semiconductors and superconductors.
9. Apply Schrödinger’s equation for solving problems of harmonic oscillator and hydrogen atom.
10. Explain electrical and magnetic properties of crystals.

Unit-1: Crystal Structure and bonding in solids
Amorphous and crystalline solids, concept of crystal lattice, elements of symmetry, unit cells and Bravais lattices, seven crystal systems, cubic lattices, coordination number, packing fraction of sc, bcc and fcc structures, miller indices, simple crystal structures like sodium chloride, calcium chloride and diamond, lauers equation for X-Ray diffraction, Bruggs law, X-ray diffraction methods, Inter atomic forces and types of bonding, cohesive energy of a solid, binding energy of ionic crystals, Madelung constant, vibrational modes of one dimensional mono atomic lattice, dispersion relations, Brilloin zones.

Unit-2: Quantum Theory
Origin of the quantum theory; failure of classical physics to explain the phenomena such as blackbody spectrum; Wein displacement law and Rayleigh-Jeans law; Ritz combination principle in spectra; stability of an atom; Planck's radiation law; photoelectric effect; Einstein’s explanation of photoelectric effect, Compton effect, Einstein’s Theory of Specific Heats, Debye’s modification, Bohr’s Theory of Hydrogen Atom, Experimental verification.

Unit-3: Quantum Mechanics
Wave particle duality, de-Broglie's hypothesis for matter waves (relativistic and non relativistic particle); wave packets, group velocity, phase velocity and particle velocity; experimental demonstration of matter waves; Heisenberg’s uncertainty principle, its extension to energy and
time and its application. Consequence of de Broglie's concept; quantization in hydrogen atom; ground state energies of a particle in one dimensional box.

Unit-4: Schrödinger's Equation
Wave function of quantum particle, its properties and significance; operatoric Schrödinger's equation; postulates of quantum mechanics; expectation values, applications to particle in one and three dimensional boxes, harmonic oscillator, rigid rotor; reflection at a step potential, transmission across a potential barrier; hydrogen atom.

Unit-5: Electrical and Magnetic Properties of Crystals
Schrödinger's equation in a constant potential, Fermi energy. Energy band in solids (Kronig-Penney model-qualitative analysis), distinction between metals, insulators and semiconductors; Dia, Para and Ferromagnetism, Langevin's theory of Dia and paramagnetism, Curie-Weiss law, ferromagnetism and magnetic domains, ferromagnetic materials, hysteresis.

Physics Practical List
1. To find the value of e/m for electron by Thomson method.
2. To determine the Planck's constant (h) by measuring radiation in a fixed spectral range.
3. To calibrate constant deviation spectrometer.
4. To find dielectric constant of a glass plate with the help of parallel plate capacitor.
5. To study the effect of temperature on the reverse current in junction diode and hence to determine the forbidden energy gap.
6. To determine power factor by joule's calorimeter.
7. To determine the height of a distant object using sextant.
8. To determine Rydberg's constant with the help of diffraction grating and hydrogen discharge tube.
9. To find the wavelength of sodium D1 and D2 line by spectrometer.
10. To determine the charge of an electron by Mullikens oil drop method.
11. To study the absorption spectra of KMnO₄ using diffraction grating.

Suggested Readings:
1. Basic Quantum Mechanics, Ajay Ghatak
2. Quantum Mechanics, Peebles
3. Quantum Mechanics, Agarwal / Hari Prakash
4. Introduction to Quantum Mechanics, Pauling / Wilson
5. Quantum Mechanics, Schiff
6. Quantum Mechanics, Powell and Crasemann
7. Quantum Mechanics, Eisberg / Resnick
8. Advanced Quantum Mechanics, J. J. Sakurai,

Elective I – Botany

Paper V: Taxonomy of Angiosperms and Economic Botany

Contact Periods/week: 05 + 4 Practical

Maximum Marks – 60
Min. Pass Marks – 25
Internal – 15 (Theory 10 & Practical 5)
Practical – 25 (External)

Note: Two questions will be set from each unit and students are required to attempt one question from each unit.

Objectives:
1. To provide an understanding of origin, evolution and taxonomy of Angiosperms.
2. To familiarize the student, teachers with different types of locally available plants of some families.

Unit I – Flower:
A modified shoot, its structure, development and function, structure of anther and pistil: the male and female gametophytes, types of pollination, attractions and rewards for pollinators; pollen-pistil interaction, self incompatibility, double fertilization; formation of seed, endosperm and embryo; fruit development and maturation. Ecological adaptations of seeds and fruits; dispersal strategies, significance of seed - genetic recombination and its significance.

Angiosperms: Terminology for the description of vegetative parts and their modifications – root, stem, leaf and floral parts, types of fruits, ovules and seeds in semi-technical language.

[Signatures]
Unit II - Angiosperm taxonomy: Brief history, aims and fundamental components (β, β & γ) taxonomy keys for identification, Botanical nomenclature-principles and rules; taxonomic hierarchy; type concept; principle of priority.

Unit III - Classification of angiosperms: Salient features of the systems proposed by Bentham and Hooker; and Engler and Prantl. Major contributions of cytology, phytosystematics and taxonomy to classification.

Unit IV - Diversity of flowering plants: Study of the following families with representative examples: Ranunculaceae, Brassicaceae, Malvaceae, Rutaceae, Fabaceae, Apiceae, Acantaceae.

Unit V - Diversity of flowering plants: Study of the following families with representative examples: Apocynaceae, Aseptiaceae, Solanaceae, Lanaiaceae, Chenopodiaceae, Euphorbiaceae, Liliaceae and Poaceae. Note to teachers: To save plant diversity, students should be instructed not to pluck plants and flowers while submitting a project for practical examination; instead, a well prepared and illustrated field report should be submitted.

Practicals

Objectives:

i) To familiarize the students with technical terms and methods of describing the plant.

ii) To impart the skills for identification of plant and assigning to its family.

iii) To provide the field experiences for familiarization of different plants of the families given in the syllabus.

Angiosperms

Classification and description in semi-technical language of at least one plant from each family.

1. Ranunculaceae: Ranunculus, Delphinium
2. Brassicaceae: Brassica, Alyssum, Iberis, Coronopus
3. Malvaceae: Hibiscus, Abutilon
4. Rutaceae: Murraya, Citrus
5. Fabaceae: Faboidea, Lathyris, Cajanus, Melilotus, Trigonella
6. Cascalespinoidaceae: Cassia, Caesalpinia Mimosaideae: Prosopis, Mimosa, Acacia

[Signature]
<table>
<thead>
<tr>
<th>Family</th>
<th>Genus</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. Apiaceae</td>
<td>Coriandrum, Foeniculum, Anethum</td>
</tr>
<tr>
<td>7. Acanthaceae</td>
<td>Adhatoda, Peristrophe</td>
</tr>
<tr>
<td>8. Apocynaceae</td>
<td>Vinca, Thevetia, Nerium</td>
</tr>
<tr>
<td>9. Asclepiadaceae</td>
<td>Calotropis</td>
</tr>
<tr>
<td>10. Solanaceae</td>
<td>Solanum, Withania, Datura</td>
</tr>
<tr>
<td>11. Euphorbiaceae</td>
<td>Euphorbia, Phyllanthus</td>
</tr>
<tr>
<td>12. Lamiaceae</td>
<td>Ocimum, Salvia</td>
</tr>
<tr>
<td>13. Chenopodiaceae</td>
<td>Chenopodium, Beta</td>
</tr>
<tr>
<td>14. Liliaceae</td>
<td>Asphodelus, Asparagus</td>
</tr>
<tr>
<td>15. Poaceae</td>
<td>Avena, Triticeum, Hordeum, Poa, Sorghum</td>
</tr>
</tbody>
</table>

Scheme of Practical Examination

Time: 3 hrs.
Max. Marks: 25 + 5 = 30

1. Description of the given flowering plant in technical language giving floral formula and floral diagram.
2. Assign the given flowers to their families giving reasons.
3. Spots (1-5 Nos.)
4. Field report
5. Practical record and Sessional
6. Internal evaluation

Suggested Readings

- Shukla, P and Misra, S., An Introduction to Taxonomy of Angiosperm, Vikas Publishing House, New Delhi
- Bhattacharya, B. 2005, Systematic Botany, Narosa Publishing House, New Delhi

[Signature]

Scanned by CamScanner
Elective II – Chemistry
Paper V

Contact Periods/week: 05 + 4 Practical

Maximum Marks – 60
Min. Pass Marks – 26
Internal – 15 (Theory 10 & Practical 5)
Practical – 25 (External)

Note: Two questions will be set from each unit and students are required to attempt one question from each unit.

Objectives: After completing V semester the students should be able to:

(i) appreciate the role of carbonyl group in determining the chemistry of aldehydes and ketones.

(ii) acquire the knowledge of methods of preparation and chemical reactions shown by carboxylic acids.

(iii) appreciate to learn the technique of conversion of carboxylic acids into its useful derivatives.

(iv) differentiate open chain ethers and cyclic ethers with respect to their chemical reactions.

(v) gain comprehensive knowledge about the chemistry of nitrogen containing organic compounds and their industrial and domestic applications particularly keeping in focus the preparations of dyes and drugs.

(vi) gain knowledge about various classes of carbohydrates and appreciate the role of structures in the explanation of various phenomena like mutarotation and determination of ring size.

(vii) visualize the importance of sugars as bio molecules.

(viii) learn in detail the chemistry associated with nitrogen based compounds such as amino acids, proteins, peptides, nucleic acids and the biological issues associated with their study.

(ix) judge and describe the importance of oil, fats, detergents and dyes in daily life.

(x) prepare some of the dye materials in the laboratory.

Instructional Strategy:
In dealing with the topic of interaction of radiations (UV, visible, IR) with matters (the carbon compounds here) the teachers should encourage the use of constructivist approach by
promoting open-ended and problem-solving techniques in order to enhance the thinking capacity among the students. Visits to some advanced laboratories in the nearby areas should be encouraged to give acquaintance to the students of the use of instrumental techniques in the elucidation of the structures of the organic compounds. The entire descriptive organic chemistry be dealt with in the light of structural parameters associated with compounds. In transaction of the reaction mechanisms the use of logistic approach and advance organizer model may be made. Seminars and poster sessions may be encouraged to discuss industrial application of organic compounds such as alcohols, phenols, esters, dyes and drugs.

Unit – I: Aldehydes and Ketones

Unit – II: Carboxylic Acid & its Derivatives
Preparation of carboxylic acid derivatives, chemical reactions, mechanisms of esterification and hydrolysis (acidic and basic)

Ethers and Epoxides

Unit - III: Organic Compounds of Nitrogen

Unit - IV

Cyclic structure of D(+) glucose. Mechanism of Mutarotation.
Structures of ribose and deoxyribose.

An introduction to disaccharides (maltose, sucrose and lactose) and polysaccharides (starch and cellulose) without involving structure determination. Fats, Oils, and Detergents: Natural facts, edible and industrial oils of vegetable origin, common fatty acids, glycerides, hydrogenation of unsaturated oils. Saponification value, iodine value, acid value, Soaps, synthetic detergents. Alkyl and aryl sulphonates.

Suggested Readings

2. Finar, I.L., Organic Chemistry; Vol. 1, ElBS Ltd.

PRACTICAL:

1. Double stage preparation of two organic compounds from the list given below.
 a. Aniline to acetanilide and then to p-bromoacetanilide.
 b. Aniline to acetanilide and then to p-nitroacetanilide.
 c. Benzonic acid to Benzoyl chloride and then to Benzamide.
 d. Benzoyl chloride to Benzamide and then to benzoic acid.

2. Chromatography

 (A) Thin Layer Chromatography Determination of Rf
 a.values and identification of organic compounds. Separation of green leaf pigments (spinach leaves may be used)
 b. Preparation and separation of 2, 4-dinitrophenyl hydrzones of acetone, butanone, hexan-2 and

 [Signatures]
3-one using toluene and light petroleum (60:60).
c. Separation of a mixture of dyes using cyclohexane and ethyl acetate (8.5:1.5).

(B) Paper chromatography: Ascending and circular Determination of Rf values and identification of organic compounds.

3. Qualitative analysis of mixture of organic compounds (Separation technique & analysis by preparing suitable derivatives)

Elective III – Zoology

Paper V: ANIMAL PHYSIOLOGY, BIOCHEMISTRY & IMMUNOLOGY

Contact Periods/week: 05 + 4 Practical

Maximum Marks – 60
Minimum Pass Marks – 20
Internal – 15 (Theory 10 & Practical 5)
Practical – 25 (External)

Note: Two questions will be set from each unit and students are required to attempt one question from each unit.

Objectives: To study the biomolecules and their functions with reference to different physiological processes in vertebrates and to understand the defense mechanism in humans.

Unit-1.
 1. Classification, structure and function of biomolecules. (Carbohydrates, Proteins and Lipids)
 2. Carbohydrate metabolism (Glycolysis, Kreb’s cycle, ETC).
 3. Glycogenesis, glycoegenolysis and neoglycogenesism.
 4. Lipid metabolism (biosynthesis and breakdown)
 5. Enzymes – classification and mechanism of action.

Unit-2.
 1. Physiology of digestion and absorption in vertebrates with special emphasis to mammals.
 2. Hormonal regulation of digestion.
3. Physiology of respiration in vertebrates, factors affecting oxygen dissociation, neural control of respiration.

Unit-3.
1. Blood and circulation – components, Blood groups, Rh factor, Blood pressure, ECG. Cardiac cycle and Cardiac output.
2. Osmoregulation.
3. Physiology of excretion in vertebrates with special emphasis to mammals.

Unit-4.
1. Structure and properties of nervous tissue.
2. Conduction of nerve impulse.
3. Types of muscles and their properties.
4. Various theories & physiology of muscle contraction.

Unit-5.
1. Immune system in self defence.
2. Innate & adaptive Immunity.
3. Humoral & cell mediated Immunity.
4. Antibody structure & interactions with antigens.
5. Auto Immunity, Vaccination, Allergies, Cancer, Immunodeficiencies.

PRACTICAL
Objective – To develop skills of performing physiological, biochemical and immunological tests to know the actual process of life.
1. Identification of blood groups of human.
3. Study of haemin crystal from human blood.
4. Estimation of haemoglobin.
5. Total count of RBC and WBC in human blood.
6. Study of blood pressure by auscultatory method.
7. Study of coagulation time and bleeding time.
8. Qualitative test for identification of carbohydrates, proteins and lipids.
11. Testing activity of salivary amylase (effect of temperature and pH)
12. Study of reflexes (knee jerk, pupil constriction etc)

SCHEME OF PRACTICAL EXAMINATION

1. Qualitative Estimation of Biomolecules
2. Quantitative Estimation of Protein/
 Enzyme activity
3. Hematology Experiment
4. Demonstration of reflexes/
 Blood Pressure
5. Practical Records
6. Viva-voce

Referred books:
1. Biochemistry - Campbell
2. Biochemistry – Harper
3. Biochemistry – Nelson and Cox
4. Animal Physiology – Eckert and Freemann
5. General and Comparative Physiology - William S. Hoar.
8. Immunology - Kuby.
9. Immunology - Roitt & Roitt.
10. Laboratory techniques - Swaroop, Azora & Pathak.

Elective III – Mathematics
Contact Periods/week: 05 + 4 Practicum

Maximum Marks – 30 + 30 = 60
Min. Pass Marks – 20
Internal – 15 (Theory 10 & Practicum 5)
Practicum – 25 (Internal)

M - 5.1: REAL AND COMPLEX ANALYSIS

Time: 3 Hrs. Max. Marks: 30
Pass Marks: 10

[Signatures]

Scanned by CamScanner
NOTE : Two questions will be set from each unit with Internal choice

Objectives : To acquaint students with rigorous treatment of elementary Real and Complex variables.

Unit - I Riemann integral, Integrability of continuous and monotonic functions. The fundamental theorem of integral calculus. Mean value theorems of integral calculus.

Unit - II Improper integrals and their convergence, comparison tests, Abel's and Dirichlet's tests.
Series of arbitrary terms. Convergence, divergence and Oscillation.

Unit - III Partial derivation and differentiability of real-valued functions of two variables.
Schwartz and Young's theorem. Implicit function theorem. Fourier series.
Fourier expansion of piecewise monotonic functions.

Unit - IV Complex numbers as ordered pairs. Geometric representation of complex numbers, Stereographic projection.
Continuity and differentiability of complex functions. Analytic functions.
Cauchy-Riemann equations. Harmonic functions.

Content as in:
1. R.R. Goldberg, Methods of Real Analysis
2. S.C. Mallic, Mathematical Analysis

M - 5-2 ABSTRACT ALGEBRA

Time : 3 Hrs. Max. Marks : 30
Pass Marks : 15

NOTE : Two questions will be set from each unit with Internal choice

Objectives : To acquaint with rigorous treatment of Abstract algebra.
Center for Group of prime order.

Unit - II Abelianizing of a group and its universal property. Sylow’s theorem, P-Sylow subgroup. Structure theorem for finite Abelian groups.

Unit - III Ring theory – Ring homomorphism, ideals and quotient rings, field of quotients of an integral domain.

Unit - IV Euclidean rings, Polynomial rings, Polynomials over the Rational Field.

Unit - V Eisenstein criterion, Polynomial rings over commutative rings, Unique factorization domain, Principal Ideal domain and Euclidean Domain.

Content as in:
1. N. Herstein - Topics in Algebra, Wiley Eastern

M - 5.3 Mathematics Practicum

Max. Marks: 25
Pass Marks: 10

List of Activities:
- Activity oriented problem solving/ Experiments using mathematical software or computer programming language based on the content studied in semester V Mathematics papers M-5.1 and M-5.2.
- Mathematics seminar.

Education Component:

PC – 1. Physical Sciences - 1

Contact Periods/week: 05

Maximum Marks – 60
Min. Pass Marks – 20
Internal – 15

Course objectives:
The student teacher will be able to develop the following competencies through the course.
1. Gains an understanding of the nature of knowledge and its validity in physical sciences.
2. Reviews the contributions of physical scientists to the knowledge domain of physical science.
3. Integrates the knowledge in physical science with the other school subjects.
4. Traces the changing trends in learning of physical science with respect to its goals, and approaches to learning.
5. Analyses the physical content with respect to its categories, process skills, knowledge organization and other critical issues.
6. Develop concept maps representing units, themes interrelatedness among concepts.
7. Develop task- oriented objectives based on the content themes/units.
8. Views learner as a constructor of knowledge.
9. Identifies the physical concepts that are alternatively conceptualized by teachers and students in general.
10. Examine the content to seek an understanding that different themes require differential treatment.
11. Explores the different ways of creating learning situations in learning of physical concepts.
12. Formulates meaningful inquiry episodes, problem solving situations, investigatory projects based on secondary school content in physical sciences.
13. Examines the different pedagogical issues in the content of learning physical sciences.
14. Develop the aptitude of apt-decision making ability.

Course Content

Unit 1: The nature and scope of science

- Nature of science and place of physical sciences in it.
- Facts, concepts, theories and generalization into laws.
- Mutual interdependence between theories and experimental work.
- Historical evolution of major physical concepts and theories.
- Contribution of some Indian and international physical scientists to the knowledge domain of science with special reference to the methods of discovery / investigation adopted.
- The place of physical sciences in the school science curriculum.
- Integration of knowledge in physical sciences with the other school subjects.
Professions/prospects in the area of physical sciences in contemporary world.

Unit 2: Facilitating-learning situations in physical sciences.
- Objectives of learning physical science in the light of NCF 2005 specially laying emphasis on behaviourism versus constructivism.
- Training in process skills (observation, classification, interpretation, control of variables, measuring, hypothesizing, experimenting, inferring, predicting and communicating).
- Meta-cognitive thinking in learning of physical science
- Implication of development processes in science learning based on Piaget, Bruner, Ausubel, Driver, Novak and some other constructivists in facilitating learning situations in physical science

Unit 3: Knowledge conceptions in physical sciences
- Process of concept formation
- Identification of alternative conceptualization (misconceptions) of students and teachers in few related topics of physical science and remedial intervention in teaching.
- Content analysis of selected units and suitable pedagogy for their teaching.
- Concept mapping in teaching units at secondary stage science curriculum.
- Writing task-oriented objectives.

Unit 4: Approaches to constructing knowledge in physical science
- Approaches to concept learning, reflection on conceptual framework about certain physical concept.
- Lecture and demonstration methods making them interesting using different techniques including inquiry, problem solving strategies, investigatory approach; guided discovery approach; inductive and deductive approach, learning through project work.
- Self learning strategies.
- Cooperative and collaborative learning: group investigation and group discussion.
- Role of un and semi structured experimental work in learning physical science.
- Use of analogies in evolving the meaning of a physical science concept.

Unit 5: Use of ICT in classroom processes in physical sciences
As learning through
- Project making / power point presentation / innovative techniques and interactive media
- Online learning and internet
Books recommended:

- Saxena, A.B., Understanding Learning Physics.
- Madhukar, I., Internet based Distance learning, Author Press, India (20)

PC – 2, Biological Sciences – 1

Contact Periods/week: 05

Maximum Marks – 60
Min. Pass Marks – 20
Internal – 15

Objectives: The pupil teachers will be able to:

1. Gain the knowledge and understanding of nature and scope of Biological Science.
2. Review the contributions of Biologists
3. Integrate the knowledge in Bio Science with other school subjects
4. Analyse the biological content with respect to the categories, process skills, knowledge organization and other critical issues with the changing trends in learning of Biology
5. Develop concept maps and process-oriented objectives based on the content themes/units

[Signatures]
6. Identify the biological concepts that are alternatively conceptualized by teachers and learners in general.

7. Design lesson in Biology based on learning experience of various methods Models of teaching.

8. View learner as constructor of knowledge

9. Explore the different ways of creating learning situations in Biology

10. Formulate meaningful inquiry episode, problem solving solutions, investigatory project based on secondary school Biology

11. Examine the different pedagogical issues in the learning biology

12. Know the importance and functions of computer programming and Internet services in spreading of Biological information.

Unit I: Nature and Scope of Biological Science
- Nature of Science with particular reference to Biological Science.
- Relation of Biological Science with other disciplines
- History of development of Biological concepts and theories based on secondary syllabus
- Biological Science as a structure of organization and experiences.
- Thrust areas in Bio Science and their impact on modern community
- Landmark discoveries in Biological Science.
- Contributions of Indian and International Biologists
- Professional avenues in Biological Science

Unit II: Curricular reforms and Changing trends in learning Biological Science
- Objectives of learning Biological Science
- Development of process skills-observation, classification, experimenting, hypothesizing, inferring, predicting and communicating.
- Construction of concepts of Biology
- Learning as constructing of knowledge (with concrete examples from biology)

Unit III: Concept analysis in Biology text books
- Analysis of text book (at major concepts level) suggestion of suitable strategies for classroom transactions with reference to CBSE and State Boards syllabi of IX and X class
- Concept mapping in teaching learning process
- Skills related to diagram drawing

Unit IV: Approaches to constructing knowledge in biological science
- Approaches to concept learning, conceptual change model (reconstructing ideas about certain biological concepts)
- Different types of methods; Lecture, demonstration problem solving strategies inquiry, investigatory approach, guided discovery approach, inductive & deductive approaches learning through projects.
- Cooperative and collaborative learning; group investigation
- Self learning strategies
- Multi Media with interactive learning approaches
- Use of analogies in evolving the meaning of a biological concept

Unit V: ICT in classroom processes in Biological Science
- ICT Material and its use in teaching and learning of Biological Science
- Learning through power point presentation and interactive media
- Use of internet and on line learning

Books suggested:

[Signatures]

G. Gulati

[Signature]

Shahzad
9. NCERT: Procedures for Developing an Environmental Education Curriculum
 UNESCO-UNDP International Environmental Education Programme, Environmental
 Education Series 22, New Delhi.
 teachers and educators, UNESCO, Bangkok
 Education, UNESCO,
14. New UNESCO Source Book for Teaching Science; Unesco, Paris, Richardson, J.S.
 science Teaching in Secondary schools; Prentice Hall, New York
15. Smith, M.D. (1975): Learning and Its Classification; Boston: Allyn and Bacon, Inc.
 handbook of Teachers, Students and Examination; Prentice Hall of India Pvt. Ltd., New
 Delhi.

PC – 2. Mathematics - 1

Contact Periods/week: 05

Maximum Marks – 80
Min. Pass Marks – 20
Internal – 15

Objectives: To enable the pupil teacher to:

- Understand and appreciate the uses and significance of mathematics in life.
- Learn successfully, various approaches of teaching mathematics and to use them
 judiciously.
- Know the methods of planning instruction for the classroom
- Construct test items in mathematics.
- Appreciate and organize activities to develop aesthetic sense of mathematics.
- Obtain feedback both about teaching as well as students learning
- Use the tools of ICT for affective transaction of Mathematics Teaching.
Unit – 1 Nature of Mathematics

- The growth and development of mathematics
- The abstract nature of mathematics
- The significance of mathematics
- The two kinds of mathematicians viz., Pure and Applied.
- The views and thoughts of mathematicians about the nature, scope and significance of mathematics.
- The inevitable role of mathematics in school curriculum
- Historical evolution of certain mathematical concepts.

Unit – 2 The Structure of Mathematics.

- Axiomatic systems and their classical examples from geometry and algebra
- Undefined terms in mathematics
- Definitions in mathematics and defining properties (conditions) in a definition.
- Types of proofs in mathematics: Direct proof and Proof by contradictions. Disp oof in mathematics by counter examples.
- Mathematical generalization, Mathematical conjectures and proof by mathematical induction.
- Distinction between proof and verification
- Paradoxes and Fallacies

Unit 3: Approaches to constructing knowledge in Mathematics.

- Intuitive learning
- Learning by guided discovery strategies
- Learning by expository strategies
- Learning by searching patterns
- Conjuncture making
- Learning mathematics collaboratively in groups
- Self learning strategies

Unit 4: Pertinent Pedagogical Issues

- Analysis of Mathematical content of school textbooks
- Learning of Mathematics by gifted children
- Learning of Mathematics by slow learners
• Mathematical modeling as a unifying theme
• Venn diagrams as a tool for teaching-learning of mathematics.

Unit 5: ICT in Mathematics Teaching
• Windows Fundamentals: Creating, editing and managing files and folders, Windows explorer, My Computer, Opening and exploring external disc/hoppy, CD writing and editing.
• Use of the Mathematical softwares such as M.E. Equation editor, Math type, Matlab.

Suggested readings
2. Tawney, D.A.: Learning through Computer
3. O’Shea T and John St: Learning and Teaching with Computer.
4. Roy, G.: Computer Applications
5. What is Mathematics? An elementary approach to ideas and methods.
6. Richard Courant & Herbert Robbins Oxford University Press
8. Techniques of Problem Solving – Steven G. Krant, Universities Press
10. Instructional manual for Math type.

Assessment for Learning - 11

Maximum Marks – 40
Min. Pass Marks – 13
Internal – 15

Objectives
• Develop assessment tasks and tools to assess learners’ performance
• Analyse, manage and interpret assessment data
• Analyse the reporting procedures of learners’ performance in schools
• Develop indicators to assess learners’ performance on different types of tasks
• Examine the issues and concerns of assessment and evaluation practices in schools
• Understand the policy perspectives on examinations and evaluation and their implementation practices
• Traces the technology bases assessment practices and other trends at the international level.

UNIT I: Tools and Techniques of Assessment
• Meaning and Deference between tools and techniques
• Project work,
• Field Trips and Field Trips
• Laboratory work
• Journal Writing
• Concept Mapping
• Written and Interview / Oral Test

UNIT II: Planning & Construction of assessment tool
• Consideration of what and why to assess (content and objectives)
• Differentiation between instructional, learning and assessment objectives
• Stating of Assessment Objectives
• Preparation of a blueprint:
 o Weighage to content, objectives, difficulty level, types of questions, allocation of time
 o Assembling the test items
• Guidelines for administration
• Scoring procedure – manual and electronic
• Development of Rubrics

UNIT III: Implementation and Reporting of assessment
• Reporting Students Performance – context and formats; Progress reports, Cumulative records, Profiles, and Open house
• Analysis and Interpretation of Students’ Performance
 o Processing test performance
 o Calculation of percentile and percentile rank
 o Interpreting performance
• Feedback
 o Role of Feedback in Improving Learning and Learners’ Development
- Ascertain student needs, identifying student interests and feeding forward for improving learning
- Using feedback for reporting to different stakeholders – students, parents, and administrators
- Use of Feedback for teachers’ self-improvement

UNIT IV: Issues and Concerns in Assessment and Evaluation

- Examination Stress, Anxiety and unwanted Consequences
- Malpractices
- Need for Examination Reforms:
 - Recommendation of different commission: University Education Commission, Secondary Education Commission, Education Commissions; Recommendation of NCT 2005

Sessional Work

- Analyse answers given by the learners for one particular question
- Select any ten questions from the Class VI-XII textbook of the subject of your choice which
- Lend scope to the creativity of the learners
- Study the key points of the Ist Term assessment of any student of Class VI-XII
- Devise a strategy to incorporate the suggestions given in the Ist CCE report for the
- Presentation of papers on issues and concerns / trends in assessment and evaluation
- Presentation of papers on examination and evaluation policies
- One sessional test

Suggested readings:

Basics in Education

Objectives: The course intends to make the learners:
- To understand nature and meaning of education
- To understand determinants of education
- To understand and identify different ways of knowing and forms of knowledge
- To appreciate and establish relationship between different facets of knowledge
- To develop a critical understanding about the nature of school knowledge
- To distinguish and there by establish linkages between school knowledge and local knowledge
- To appreciate normative character of education and teaching
- To establish connections between textural knowledge with contextual knowledge

Contact Periods/week: 03

Maximum Marks: 40

Min. Pass Marks: 13

Internal: 10

[Signatures]

Scanned by CamScanner
To understand and appreciate how different educational thinkers at different historical junctures conceived and conceptualized education

Unit I: Education: Conceptual Framework
- Education: Concept, Meaning, Nature, and Modes/Agencies of Education
- Modes of Education: Formal, Non-formal and informal modes
- Education a Normative Act: Aims of Education-Socio-cultural, politico-economic and historical analysis
- Determinants of Purpose and Process of Education: Community, Religion, State and Market

Unit II: Understanding Knowledge
- Knowledge: Meaning, Nature, and Sources
- Knowing: Meaning, Nature, and Ways
- Different facets of Knowledge and their Relationship: Particular/Local-Universal, Concrete-Abstract; Practical-Theoretical
- Manifestation of Knowledge: Local, Contextual, Textual, and Institutional
- Information, content, Knowledge and Wisdom School Knowledge
- School: Meaning and Nature
- Functions of School: Cognitive, Socio-cultural, Politico-economic and Normative.
 A critical understanding of:
 * Institutionalization of knowledge
 * Disciplinary knowledge
 * Authoritative knowledge
- Knowledge in text-book: Nature and Limitations

Unit III: Trends in Education Theory and Practice: Indian
- Basic Education (M.K. Gandhi)
- Integral Education (Sri Aurobindo Ghosh)
- Liberationist Pedagogy (Rabindranath Tagore)
- Man Making Education (Sri Vivekananda)

Unit IV: Trends in Education Theory and Practice: Western
- Idealist Notion of Education (Plato)
- Naturalistic Concept Education (Rousseau)
- Humanization of Education (Pestalozzi)
Transactional Modes:

- Lecture-essay discussion
- Observational studies
- Analysis of textual knowledge
- Critical/Reflective study of contemporary aims of education, and their determinants.
- Local knowledge and school knowledge: A critical understanding of relationships (Practicum)
- Observational and critical study on how text-book determines every activity of teacher and learner and teaching and evaluation in school. (A critique on text-book culture in school)

Suggested Readings:

8. Dewey, John (). Experience and Education.

Bachelor of Science and Bachelor of Education
Rani Durgawati University
COURSES OF STUDIES
For
Four Year Integrated
B.Sc.B.Ed. (Eight Semesters) Course

SIXTH SEMESTER

<table>
<thead>
<tr>
<th>Subject/Paper</th>
<th>Paper</th>
<th>Intern.</th>
<th>Total</th>
<th>Pds./week</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Part: Foundation Course</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entrepreneurship Development</td>
<td>40</td>
<td>10</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>Elective I + Practical</td>
<td>60+25</td>
<td>15</td>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>Elective II + Practical</td>
<td>60+25</td>
<td>15</td>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>Elective III + Practical</td>
<td>60+25</td>
<td>15</td>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>295</td>
<td>55</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td>B.Ed. Part</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P.C.- I: Physical Science</td>
<td>60</td>
<td>15</td>
<td>75</td>
<td>5</td>
</tr>
<tr>
<td>P.C.-II: Bio Science/Maths</td>
<td>60</td>
<td>15</td>
<td>75</td>
<td>5</td>
</tr>
<tr>
<td>Gender Issues & Pease Education</td>
<td>40</td>
<td>10</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>Schooling, Socialization & Identity</td>
<td>40</td>
<td>10</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>200</td>
<td>50</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Grand Total</td>
<td>495</td>
<td>105</td>
<td>600</td>
<td></td>
</tr>
</tbody>
</table>

* Elective 1 – Physics/ Botany.
* Elective 2 – Chemistry.
* Elective 3 – Zoology/Mathematics.
(All electives will have one theory paper and external practical examination except Mathematics where there will be two theory papers and practical which will be valued internally)
<table>
<thead>
<tr>
<th>Semester Name</th>
<th>Paper</th>
<th>Mark</th>
<th>Paper Code</th>
<th>Name of Papers</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI</td>
<td>Paper Theory-XI</td>
<td>30</td>
<td>M-6.1</td>
<td>Metric Spaces</td>
</tr>
<tr>
<td></td>
<td>Paper Theory-XII</td>
<td>30</td>
<td>M-6.2</td>
<td>Linear Algebra</td>
</tr>
<tr>
<td></td>
<td>Internal Test</td>
<td>15</td>
<td></td>
<td>Related To Above Papers</td>
</tr>
<tr>
<td></td>
<td>Practicium</td>
<td>25</td>
<td></td>
<td>Related To Above Papers</td>
</tr>
</tbody>
</table>

B.Sc. Component:

Foundation Course: Entrepreneurship Development – II

Contact Periods/week: 03

Maximum Marks – 40
Min. Pass Marks – 13
Internal – 10

Unit I: Entrepreneurship: Meaning, Concept, Characteristics of entrepreneur, Qualities of Successful Entrepreneurs.

Unit II: Types of entrepreneurship, importance and views of various thinkers (Scholars).

- Formation of goals, How to achieve goals.
- Problems in achieving targets and solution.
- Self motivation, elements of self motivation and development.
- Views of various scholars, evaluation, solutions.
- Leadership capacity: Its development and results.

Unit III: Projects and various organisations (Govt., non-Govt.), Govt. Projects, Non-Govt. projects. Contribution of Banks, their limitations, scope.

Unit IV: Functions, qualities, management of a good entrepreneur. Qualities of the entrepreneur (Modern and traditional). Management skills of the entrepreneur. Motive factors of the entrepreneur.

Unit V: Problems and Scope of the Entrepreneur: -Problem of Capital -Problem of Power -Problem of Registration -Administrative problems -Problems of Ownership.

[Signatures]
Elective I – Physics

Paper VI: Solid State Devices and Electronics

Contact Periods/week: 05 + 4 Practical

Max. Marks: 60
Min. Pass Marks: 30

Internal – 15 (Theory 10 & Practical 5)
Practical – 25 (External)

Note: At least one question will be set from each unit. 20% of the maximum marks will form simple numerical problems and another 20% would be for objective questions with a provision to provide reasoning. All Questions will have 100% internal Choice.

Objectives: After completion of this course the students will be able to
1) Understand the theory of semiconductor devices and its applications
2) Analyse graphically the characteristic of transistors in different modes
3) Understand the working of field effect transistor, MOSFET and its applications
4) Understanding the usefulness of amplifiers, their working and use in electronic circuits
5) Understanding the concepts of Digital electronics and construction of simple digital circuits

Unit –1: Solid State Devices
Semiconductors; intrinsic semiconductors, Fermi level, temperature dependence of electron and hole concentrations; extrinsic semiconductors: doping, impurity states, electronic transport in semiconductor, PN Junction, Diode equation and diode equivalent circuit, Junction Breakdown- Zener breakdown, Zener diodes, Tunnel diode, Diode Rectifiers and rectification, light emitting diode, Schottky diode, photovoltaic cell, Hall effect and its uses.
Introduction to Nanotechnology and properties of selected Nano materials, Nano electronics.

Unit 2: Network Analysis and basic digital electronics
Kirchoff's laws, constant current and voltage sources, Superposition, Norton, Thevenin, maximum transfer theorem, Network elements, Bode Plots, Boolean algebra: Binary number systems; conversion from one system to another system; binary addition and subtraction. Logic Gates AND, OR, NOT, NAND, NOR exclusive OR: Truth tables; combination of gates: De Morgan’s theorem, Logic families.

Unit-3: Transistors
Characteristics of transistors in CB, CE and CC mode, low frequency equivalent circuits, h parameters, bias stability (emitter follower biasing and voltage divider biasing), load line, thermal runaway, field effect transistor, JFET, MOSFET.
Unit 4: Amplifiers and Oscillators

Single stage amplifiers, Multistage amplifiers, RC coupled amplifier, gain frequency response, input and output impedance, transformer coupled amplifiers, feedback in amplifiers, types of feedback, voltage gain of feedback amplifier, advantages of negative feedback, oscillators, Barkhausen criteria for oscillations, classification of oscillators, Introduction to OPAMP and applications: adder, subtractor, differentiator & integrator.

Unit 5: Modulation and Laser & Fiber Optics

Modulation and its need, Basic theory of amplitude modulation, Power in amplitude modulation, Drawbacks of amplitude modulation, Frequency modulation, Comparison between amplitude modulation and frequency modulation.

Fibre Optics: Light guidance through optical fibre, types of fibre, acceptance angle and acceptance cone, numerical aperture, V-Number, Fibre dispersion, block diagram of fibre optic communication system.

Applications of laser and optical fibers.

Practical List

1. To draw the characteristic of semiconductor diode and calculate its forward resistance.
2. To draw the characteristic of Zener diode in reverse bias voltage.
3. Zener diode as voltage regulator.
4. To draw the input and output characteristic of NPN/PNP transistor in the Common emitter configuration.
5. To verify Thevenin’s theorem.
6. To verify Norton’s theorem.
7. To verify Maximum Power transfer theorem.
8. To verify the superposition theorem.
9. To verify De-Morgan’s law.
10. To study the OR, AND, NOR, NAND & NOT, logic gates & verify the truth table.
11. Study of OPAM as adder, differentiator, integrator.
13. Study of h parameters of a transistor.
14. To determine hall voltage, hall coefficient and free charge carrier density of a given sample.

Suggested Readings
- Digital Principles and applications by A.P. Malvino and Donald P. Leach
- Electronics: Analog and Digital by I. J. Nagrath
- Modern Digital Electronics 4E by R.P. Jain
- Handbook of Electronics by S.L. Gupta and V. Kumar

—————

Elective I – BOTANY

Paper VI: Plant Physiology and Biochemistry

Contact Periods/Week: 05 + 4 Practical

Maximum Marks – 60
Min. Pass Marks – 20

Internal – 15 (Theory 10 & Practical 5)
Practical – 25 (External)

Note- Two questions will be set from each unit and students are required to attempt one question from each unit.

Objectives: To provide an understanding of biochemical and physiological phenomena at functional and molecular level.

Unit I: Basics of enzymology: Discovery and nomenclature; Nature and characteristics of enzymes; concept of holoenzyme, apoenzyme, coenzyme and cofactors; regulation of enzyme activity; mechanism of action.

Unit II: Plant – Water relations: Importance of water to plant life; physical properties of water; diffusion and osmosis; absorption, transport of water and transpiration; physiology of stomatal movement.

Mineral nutrition: Essential macro and micro-elements and their role; deficiency symptoms; mechanism of mineral uptake.

Transport of organic substances: Mechanism of phloem transport; source-sink relationships; factors affecting translocation.

Unit III: Photosynthesis: Historical aspects; photosynthetic pigments; action spectra and enhancement effects; concept of two photosystems; Z-scheme; photophosphorylation; Calvin cycle; C-4 pathway; CAM plants; photorespiration. Significance of photosynthesis.
Respiration: Aerobic and anaerobic respiration, kreb's cycle; electron transport mechanism (chemo-osmotic theory); Redox potential; oxidative phosphorylation; ATP the biological currency? Pentose phosphate pathway.

Unit IV: Nitrogen and lipid metabolism:
Biology of nitrogen fixation; importance of nitrate reductase and its regulation; ammonium assimilation; structure and function of lipids; fatty acid biosynthesis; β-oxidation; saturated and unsaturated fatty acids; storage and mobilization of fatty acids.

Unit V: Growth and development:
Definitions; phases of growth and development; Kinetics of growth; seed dormancy, seed germination and factors of their regulation; plant movements; the concept of photoperiodism; physiology of flowering; Florigen concept; biological clocks; physiology of senescence, fruit ripening; plant hormones- auxins, gibberellins, cytokinins, abscisic acid and ethylene, history of their discovery, biosynthesis and mechanism of action; photomorphogenesis; phytochrome and cryptochrome, their discovery, physiological role and mechanism of action.

Practical
Objectives:
1. To impart the skills of handling and setting up of apparatus to conduct plant physiological experiment, collection of data and interpretation of results.

Plant Physiology
1. To study the permeability of plasma membrane using different concentrations of organic solvents inorganic salts.
2. To study the effect of temperature on permeability of plasma membrane.
3. To prepare the standard curve of protein and determine the protein content in unknown samples.
4. To study the enzyme activity of catalase and analyse as influenced by pH and temperature.
5. Comparison of the rate of respiration of various plant parts.
7. Determining the osmotic potential of vacuolar sap by plasmolytic method.
8. Determining the water potential of any tuber (potato).
9. Separation of amino acids in a mixture by paper chromatography and their identification by comparison with standards.

10. Bioassay of auxin, cytokinin, GA, ABA and ethylene using appropriate plant material.

11. Demonstration of root and shoot formation from the apical and basal portion of stem segments in liquid/solid medium containing different hormones.

Scheme of Practical Examination

1. Performing a plant physiology experiment, collection and interpretation of data. 5
2. To perform the given biochemical test. 5
3. Comment upon the experiment set before you. 5
4. Viva-voce 5
5. Sessional and practical record. 5
6. Internal evaluation 5

Suggested Readings

- CBS Publishers & Distributors
- Panima Publishing Lorpin, New Delhi
- Mahr H and Schofer, P.1995, Plant Physiology, Springer Verlag, Berlin Germany

Elective II – CHEMISTRY

Paper VI

Contact Periods/week: 05 + 4 Practical

Maximum Marks – 60

Min. Pass Marks – 20

Internal – 15 (Theory 10 & Practical 5)

Practical – 25 (External)

Note: Two questions will be set from each Unit and the candidates will be required to attempt one.

Scanned by CamScanner
Objectives: After completion of this course the students will be able to

(i) Gain detailed knowledge about hard and soft acid and bases and appreciate the use of this concept in the learning of inorganic chemistry.

(ii) Learn silicones and phosphazenes as inorganic polymers and assess the significance of the leading parameters in them.

(iii) Get a comparative view of the valence bond theory and crystal field theory in explaining the behavior of the complex species.

(iv) Enumerate the factors affecting the thermodynamic stability of the complex species.

(v) Give explanation about the magnetic and spectral behavior exhibited by various complex species.

(vi) Appreciate the role of organometallic chemistry in the industry.

(vii) Assess the role of metals ions with special reference to alkali and alkaline earth metals in various biological processes.

Instructional Strategy:
In dealing with the Hard and Soft Acids and bases, the teacher may make use of Anubeli's advance organizer model. Use of ICT may be ensured in dealing with silicones and phosphazenes. Bonding in complexes, thermodynamic stability of complexes, magnetic and spectral properties associated with the complexes be dealt with keeping in focus the cognition needs of the learner through problems solving and intentionally arousing cognitive conflict. Organometallic chemistry may be treated keeping in focus the structured parameters. Bio-inorganic chemistry may be learnt through poster sessions wherever poster can be prepared to highlight metabolic pathways.

UNIT - I

(A) Hard and Soft Acids and Bases (HSAB): Classification of acids and bases as hard and soft. Pearson's HSAB concept, acid-base strength and hardness and softness. Symbiosis, theoretical basis & hardness and softness, electronegativity and hardness and softness.

(B) Silicones and Phosphazenes: Silicones and phosphazenes as examples of inorganic polymers, nature of bonding in triphosphazenes.

UNIT - II

(A) Metal-ligand Bonding in Transition Metal Complexes: Limitations of Valence bond theory, an elementary idea of crystal-field, crystal field splitting.
in octahedral, tetrahedral and square planar complexes, factors affecting the
crystal-field parameters.

(B) Thermodynamic and Kinetic Aspects of Metal Complexes: A brief outline
of thermodynamic stability of metal complexes and factors affecting the
stability, substitution reactions of square planar complexes.

UNIT III

(A) Magnetic Properties of Transition-Metal Complexes: Types of magnetic
behaviour, methods of determining magnetic susceptibility, spin-only formula.
L-S coupling, correlation of Δ (spin only) and Δ_{eff} values, orbital contribution
to magnetic moments, application of magnetic moment data for 3d-metal
complexes.

(B) Electron Spectra of Transition Metal Complexes: Types of electronic
transitions, selection rules for d-d transitions, spectroscopic ground states,
spectrochemical series. Orbital-energy Level diagram for d1 and d10 states,
discussion of the electronic spectrum of [Ti(H$_2$O)$_6$] $^{3+}$ complexion.

UNIT IV

Organometallic Chemistry: Definition, nomenclature and classification of organometallic
compounds. Preparation, Properties, bonding and applications of alysyl and alyls of Li, Al, Hg,
Sn and Ti, a brief account of metal-ethyninic complexes and homogeneous hydrogenation,
mononuclear carbonyls and the nature of bonding in metal carbynyls.

Organometallic Compounds: Organomagnesium Compounds: The Grignard reagents-
formation, structure and chemical reactions.
Organozinc compounds: Formation and chemical reactions;
Organolithium compounds: Formation and chemical reactions.

Organosulphur Compounds: Nomenclature, structural feature, methods of formation and
chemical reactions of thiols, thioethers, sulphonic acids, sulphonamides and sulphaquinoline.

Synthetic Polymers: Addition or chain-growth polymerization. Free radical vinyl
polymerization, ionic vinyl polymerization, Ziegler-Natta polymerization and vinyl polymers.
Condensation or step growth polymerization. Polyessters, polyamides, phenol formaldehyde
resins, urea formaldehyde resins, epoxy resins and polyurethane.Natural and synthetic
rubbers.
UNIT V

Practical:
1. Gravimetric Analysis
 a. Analysis of Cu as CuCNS.
 b. Analysis of Ni as Nickel dimethylglyoxime.
 c. Analysis of Ba as BaSO4.
2. Separation Techniques
 a. Separation of Mg(II) (and Fe(III) by solvent extraction.
 b. Separation of Mg(II) (and Zn(II) by ion exchange.
3. Synthesis and Analysis
 a. Preparation of sodium trioxalatoferrate(II) (and determination of its composition by permanganometry.
 b. Preparation of Copper(II) (tetramine complex.
 c. Preparation of cis and trans bisoxalatoaquachromate(III) (complex.
4. Colorimetry
 a. Job’s Method
 b. Mole-ratio Method
 c. Determination of KMnO4 in given solution
 d. Determination of K2Cr2O7 in given solution.

Suggested Readings
2. Lee, J.D., Concise Inorganic Chemistry ELBS
4. Mallik, Madan and Tuli; Modern Inorganic chemistry; S. Chand and Company Ltd.
6. Mallik, Madan and Tuli; Advanced Inorganic Chemistry S. Chand and Company Ltd.

9. Soni, P.L., Textbook in Inorganic chemistry (a modern approach) Sultan Chand and Sons, New Delhi:

Elective III – ZOOLOGY

Paper VI: REPRODUCTIVE BIOLOGY, DEVELOPMENTAL BIOLOGY AND ENDOCRINOLOGY.

Contact Periods/week: 05 + 4 Practical

Maximum Marks: 60

Min. Pass Marks: 20

Internal – 15 (Theory 10 & Practical 5)

Practical – 25 (External)

Note: Two questions will be set from each Unit and the candidates will be required to attempt one.

Objective: To study reproductive biology, developmental biology, various endocrine glands, their structure and function.

Unit-1.

1. Reproductive system in mammals.
2. Gametogenesis, structure of sperm and ova.
3. Physiology of reproduction and fertilization in mammals (with special reference to human)
4. Estrous cycle and menstrual cycle.
5. Pregnancy, parturition and lactation.

Unit-2.

1. Types of animal eggs.
2. Cleavage pattern.
3. Development of chick embryo up to formation of primitive streak.
4. Extra embryonic membranes and fate map of frog and chick.
5. Placentation in mammals.
Unit-3.
1. Concept of competence.
2. Cell determination.
3. Cell differentiation and regeneration.
4. Parthenogenesis.

Unit-4
1. Hormones their classification and mechanism of action.
2. Receptors, primary and secondary messengers and signal transduction.
4. Hypothalamo-hypophysial portal system, pituitary hormones and their functions.

Unit-5.
1. Structure and function of Thyroid and Parathyroid gland.
2. Structure and function of Thymus.
5. Hormones released by gonads and their function.

PRACTICAL
Objective – To develop the skills to study embryonic developmental stages of animals, reproductive physiology and endocrinology.
1. To study developmental stages of chick through whole mount, section and models.
2. Study of developmental stages of frog -whole mount section and models.
3. Window preparation of avian egg.
5. Identification and study of extra-embryonic membranes, fate map through charts and models.
6. Identification and study of Placentation in mammal through charts and models.
7. Study and identification of gonads. (permanent slides)
8. Study of estrous cycle and menstrual cycle through charts and handouts.

SCHEME OF PRACTICAL EXAMINATION
1. Spotting - 10
2. Window Preparation - 05
3. Exercise based upon reproductive cycle /
Placentation - 03
4. Practical Records - 03
5. Viva-voce - 04

Referred books:
1. Animal Physiology - Eckert and Fremann
2. Animal Physiology - Chaterjee
6. Mammalian Physiology - Guyton & Hall.
11. Comparative Anatomy - Prosser.

Elective III - Mathematics

Contact Periods/week: 05 + 4 Practicum
Maximum Marks: 30+30=60
Min. Pass Marks: 20
Internal: 15 (Theory 10 & Practicum 5)
Practicum: 25 (Internal)

M - 6.1: METRIC SPACES

NOTE: Two questions will be set from each unit with Internal choice

Objectives: To develop the understanding of the basics of Topology and modern analysis

Unit - II Cauchy sequences. Completeness. Cantor’s intersection theorem. Contraction principle. Construction of real numbers as the completion of the incomplete metric space of rationals. Real numbers as a complete ordered field. Dense subsets.

Unit - IV Compactness for metric spaces, continuous Function and Compact set. Sequential compactness, Heine Borel theorem.

Content as in
G.F. Simmons - Introduction to Topology and Modern Analysis. McGraw Hill

M - 6.2: LINEAR ALGEBRA

NOTE: Two questions will be set from each unit with internal choice.

Objectives: To develop the understanding of further Abstract Algebra

Unit - II Invariance of the number of elements of a basis set. Dimension. Existence of complementary subspace of a subspace of a finite dimensional vector space. Dimension of sums of subspaces. Quotient space and its dimension.

Content as in:
I.N. Herstein Topics in Algebra. Wiley Eastern
M - 6.3 Mathematics Practicum

List of Activities:
- Activity oriented problem solving / Experiments using Mathematical software or computer programming language based on the content studied in semester VI Mathematics papers M-6.1 and M-6.2.
- Mathematics seminar.

Education Component

PC – 1. Physical Sciences - 2

Contact Periods/week: 05

Maximum Marks – 60
Min. Pass Marks – 20
Internal – 75

Course objectives: The student teacher will be able to:
1. Plan learning design based on problem-situations, inquiry episodes and projects to facilitate learning of physics.
2. Realise his/her role as a facilitator in transacting physical content in the real classroom situations.
3. Explore the use and relevance of different learning resources and material in learning different in physics.
4. Develop learning materials or selected themes that facilitate learning of physical science.
5. Identify the physical themes for which community can be used as learning sites.
6. Correlate physical science related activities through science club during school attachment programme.
7. Use the science laboratory in schools, facilities and materials available in class that facilitate learning of physical sciences.
8. Get familiarised with the different types of curricular projects in physical sciences and their purposes and themes.
9. Become aware of various professional development programmes in physical sciences.
10. Reflect upon his/her own experimental knowledge in the different processes of becoming a physical science teacher.
11. Develop teaching/learning projects using ICT.
Unit 1: Pedagogy planning in learning physical sciences

Visualising learning situations in
- Grouping of learners for collaborative and cooperative learning, creative learning situations.
- Teacher and students reflections in the process of learning.
- Transaction modes in inaccessible, deprived areas of the society and for group of differently abled children (inclusive education).
- Providing multiple learning context and opportunities, encouraging student ownership of knowledge and engagement in the learning process, effective ways of questioning, engaging in learning episodes, developing the attitudes of being the rational problem solver, taking account of student’s prior knowledge- encouraging student’s inquiry abilities, valuing student’s ideas and small group work, different ways of scaffolding and negotiating, holding brain-storming sessions.

Unit 2: Learning resources and preparation of materials
- Role of language in science.
- Preparation and use of learning aids contextually.
- Audio-visual materials – chart, models, films, and filmstrips, radio, TV, supplementary books, handbooks, laboratory guide, science kits etc.
- Field trips, national parks, study tours, community as a resource site for learning physics.
- Self-learning materials- worksheets.
- ICT in learning physical science, websites on physical science, interactive websites, on line learning, and preparation of projects using ICT.
- Use of science labs- facilities, equipments, materials, and manuals, science records.
- Unit planning and lesson planning.
- Science exhibitions, contextual activities (environmental day, Earth day, science day etc.).
- STS connections
- Enhancing professional competency of physical science teachers through action research, participation in seminars, developing write-ups for research communication.
- Learning beyond textbook.
Unit 3: Assessment of learning in physical sciences
- Construction of test items to access simple factual knowledge, higher thinking and application abilities; reliability and validity of test items, preparation of the blueprint of a question paper, use of observation techniques for assessment, recording and evaluation procedures to assess the performance of students' activities, projects, laboratory skills, group assessment; self and peer assessment; assessment of worksheets; student's writings; use of rubrics in assessment.
- Evaluation of textbooks in physical sciences at secondary stage

Unit 4: Curriculum reforms in Physical Sciences
- Salient features, merits and demerits of different science curricula such as PSSC, HP, CHEMSTUDY and CBA
- Basic criteria of validity of a science curriculum.
- Role of NCERT in preparation and uses of textbooks, handbook, and lab manual at secondary stage.

Unit 5: Strengthening the use of ICT for classroom interactions.
- ICT in learning physical sciences
- Use of websites in accessing useful data for classroom processes
- Online learning
- Preparation of projects
- Preparation of student support material (CAI)

PC - 2. Biological Sciences - 2

Contact Periods/week: 05

Maximum Marks - 60
Min. Pass Marks - 20
Internal - 15

Course objectives: The student teacher will be able to:
1. Realize his/her role as a facilitator in transacting biology content in the real classroom situation.
2. Develop learning materials that facilitate learning of biology
3. Identify the biological themes for which community can be used as learning site
4. To know the biology related activities through eco or science club during school attachment.
5. Develops the skill of experimental method and investigatory approaches.
6. Become aware of various professional development programmes in Biology
7. Examine the content to seek and understanding that different themes require differential treatment.
8. Develop biology projects using ICT
9. Use the computer in teaching & learning of new inventions about Biological Science.
10. Understand the functions of computer programming in teaching-learning strategies.

Unit I Pedagogical Issues
- Biology and gender issues
- Environmental concerns in biology learning
- Learning beyond textbooks
- Biology related social and ethical issues
- Application of biological knowledge in daily life.
- Role of Peace Education in Biology Education
- Inclusiveness in Biology Education

Unit II Pedagogical Planning in Biological Sciences
- Unit Planning
- Lesson Planning in biology
- Planning for exploration trips
- Learning in peer group
- Planning for teaching training through theatre and films
- Planning for teaching & drawing the diagram
- Planning to use the plant/animal specimen in teaching
- Planning to handle live plants/specimen in classroom/out of classroom teaching.

Unit III Assessment of Learning in Biology
- Construction of test items (unit test) to assess simple factual knowledge, higher thinking and application abilities. Preparation of blue print of question paper.
- Use of observation techniques, recording and evaluation procedures to assess the performance of students activities, projects, laboratory skills, drawing skills in biology.
- Group assessment, self and peer assessment, assessment of worksheets; students’ journals; use of rubrics in assessment.
- Portfolio assessment.
Unit IV Learning Resources and Preparation of Material
- Preparation and use of learning aids contextually
- Audio-visual materials, charts, models, aquaria, terraria, school garden, science kits, improvised learning aids, supplementary books.
- Self learning materials- worksheets
- Field trips, Natural Parks, Sanctuaries, study tours, biodiversity, economic biology, community as a resource site for learning biology.
- Use of biological material in Science labs-facilities, equipments, materials, manuals, records.
- Design of laboratory, nature clubs, eco club, biology club, bird watching, organization of exhibitions, contextual activities (Environmentary, National Science Education, wild life week etc.

Unit V: Strengthening use of ICT in learning Biology
- Websites on Biological Sciences
- Preparation of projects in ICT
- Use of ICT for learning laboratory techniques in Biology
(Suggested books as given in fifth semester)

Contact Periods/week: 05

Maximum Marks – 80
Min. Pass Marks – 20
Internal – 15

Course objectives: To enable the pupil teacher to:

i. Understand and appreciate the uses and significance of mathematics in life.

ii. Learn successfully, various approaches of teaching mathematics and to use them judiciously.

iii. Know the methods of planning instruction for the classroom

iv. Construct test items in mathematics.

v. Appreciate and organize activities to develop aesthetic sense of mathematics.

vi. Obtain feedback both about teaching as well as students learning

vii. Use the tools of ICT for affective transaction of Mathematics Teaching.
Unit – 1: Planning in Mathematics Teaching
- Practice of writing specific objectives
- Unit and Lesson planning
- Inductive method of teaching mathematics
- Deductive method of teaching mathematics
- Analytic method of teaching mathematics
- Synthetic method of teaching mathematics

Unit – 2: Learning Resources and materials in Mathematics Textbook
- Self learning materials
- Teaching aids: their meaning
 - need
 - planning
 - making and
 - appropriately using

Unit – 3: Mathematics laboratory and Mathematics club activities
- Meaning of experiments in Mathematics
- Maths lab its meaning, need & designing
- Distinction between Maths lab and Science lab.
- Mathematical games and amusements
- Recreational Mathematics
- Mathematical puzzles
- Mathematics Club
 - Its organization
 - Special activities
 - Tournaments

Unit – 4: Evaluation in Mathematics
- Test items in Mathematics
 - long answer type
 - short answer type
 - very short answer type
 - objective type

176
- Construction of various types of test items in Mathematics
 - The precautions to be taken
 - Reasons for the precautions

Unit 5: ICT in Mathematics Teaching
- MS PowerPoint: Creating, editing and enhancing PowerPoint presentation, inserting charts (especially making mathematical documents).
- Use of "MATHEMATICA" software.
- Use of "MAPLE" software.
- Internet Exploration: Communicating using e-mail and Internet, locating especially the ones dealing with maths. Visiting, sloane sequence and creating more sequences and registering them. Internet resources, use of internet for acquiring information.

Suggested Readings:
1. Nagpal, D.P.: Computer Course
2. Taxney, D.A.: Learning through Computer
3. O'Shea T. and John S: Learning and Teaching with Computer
4. User manual for "MATHEMATICA" software
5. User manual for "MAPLE" software
7. Richard Courant & Herbert Robbins Oxford University Press

Gender Issues and Peace Education

Contact Periods/week: 03

Maximum Marks – 40
Min. Pass Marks – 13
Internal – 10

Objectives
To enable teacher trainees to acquire knowledge, attitudes, values, skills and competencies to:

- Become aware of role of education in building peace as dynamic social reality.
- Understand and resolve conflicts within, and mediate others’.
- Empower themselves and transcend barriers of identity.
- Use pedagogical skills and strategies in and out of classroom for promoting peace at school level.
- Act as agency to promote peace in the local community influencing school.

Course Outline

Unit I: Concepts and concerns in Education for peace
- Foundation of peace and its components
- Initiative: International, National, and local
- Highlights of various philosophies of Peace: M.K. Gandhi, Krishnamurthy, Ambedkar, Gijubhai, Budheka, Dalai Lama

UNIT II: Peace Context
- Approaches to Education for peace
- Pedagogical skills, Strategies
- Personality formation- Knowledge, Values, Skills and Attitude
- Respect for differences: Socio-economic, Gender, Caste, Religion, Culture, Languages and Regions etc.
- Activities for education for peace

UNIT III: Understanding conflicts and Empowerment of self
- Nature of conflict: causes for conflict
- Skills and strategies for conflict resolution
- Self-management: Anger, stress management, yoga, Meditation, nurturing ethical behavior, Critical self-reflection, discipline
- Effective parenting
- Teacher as peace builder- listening skills, questioning, Providing feedback
- Critical pedagogy of education for peace, promoting dialoguing, decision making
- Integration of peace in different subjects

Activities to be taken
- Visits to organizations connected with peace and intercultural harmony, and aesthetic appreciation to experience peace as reality submission of reports on experiences.
- Assignments on topics which require deep understanding, and generating creative/alternative ideas to deal with issues and challenges to peace. Few suggested topics and sharing in groups.

 Few suggested topics for assignments:
 - Conflicts experienced at home/in family/in society/in school etc.
 - Experiences of handling conflicts in a creative manner.
 - Exploring possible strategies of resolving commonly experienced conflicts.
 - Healthy discipline among school children.
 - Identifying challenges of peace in school and dealing with one such challenge.
 - Strategies of promoting healthy relationships on the job.

- Approaches to peace education—case studies of local and international.

- Role plays to enact situations involving conflict, corporal punishment, discrimination, and domestic violence in day-to-day life.

- Films clips displaying concerns of peace, good intercultural relationships, environmental presentation and other key ideas and discussions therein, like—Dhol Debates, Sudako etc.

- Preparation of collages from newspapers etc. to highlight issues and challenges to peace or positive response to them.

- Developing an action plan for peace in school and local community.

- Visiting websites on peace education to become familiar with national and international initiatives, approaches and strategies of peace, case studies of conflict in the region.

Suggested readings:

- Kumar, S. (2007), Santi Shiksha Aur Gandhi. (in Hindi) Maharishi Valmiki College of Education, Delhi University

- NCERT 2005 position paper on Educational for Peace NCERT, New Delhi
- Prasad, D (2005), Education for living Creatively and Peacefully. Spark India, Hyderabad, A.P.
- Well Pierre 2002- The art of living in peace, UNESCO publication, UNIPALK

Schooling, Socialization & Identity

Contact Periods/week: 03

Max. Marks: 40
Min. Pass Marks: 15
Internal: 10

Objectives:

- To become aware of the processes of socialization at home which contribute in shaping identity formation of the school going child (in Indian context)
- To reflect critically on factors that shape identity formation.
- To acquaint with the processes that shape one’s own sense of identity.
- To become critically aware of “identity”
- To reflect on one’s aspirations and possibilities in order to develop a growing sense of agency as a “teacher”, a “professional”, as well as a “human being”
- To recognize the clash of identity as an offshoot of narrow identity assertion
- To appreciate and work in developing national, secular and humanistic identity
- To work for the construction of universalistic and humanistic identity

Course Content:

Unit-I: Socialization and its conditioning influences

[Signatures]
• Meaning and Nature of Socialization, and Socialization Process
• Social Institutions and Socialization: Role of Family; School; community
• Impact of socialization processes on the development of the ‘self’
• Self and related concepts: self-esteem; self-efficacy and self-actualization
• Aspects of self: physical self, social self, competent self and inner self
• Factors influencing self development: Life Skills; Professional Ethics

Unit-II: Identity formation
• Meaning of ‘identity formation’
• Culture and Identity formation
• Social categories such as caste, class, gender and religion as determinants of identity formation among individuals and groups
• The influence of peer group, of media messages on identity formation in contemporary society

Unit-III: Schooling and identity
• Schooling for identity formation
• The impact of schooling on identity formation: school culture and ethos; teaching-learning practices and teacher discourse in the classroom, (practices, value framework and ‘hidden curriculum’ in schools)
• Schooling and national identity; schooling and secular identity; schooling and humanistic identity

Unit-IV: Identity, conflict and violence
• Emergence of multiple identities
• Assertion of identities, conflict and violence
• Learning to live together with multiple identities: role of education
• Growing Competition- Increase Conflict
• Conflict Resolution
• Concept of emotional intelligence and its role in practicing peace

Transactional Modes:
• Introductory lectures-cum-discussion, to introduce key themes of the course—socialization, identity formation, sociological notions and experiential sense of ‘self’ etc.
- Group discussion and exploration, around selected readings and key questions.
- Reflective, autobiographical writing, towards self-understanding, on given topics.
- Journal writing, on course experiences, to be initiated... to be continued through the year, with occasional sharing with a ‘mentor’
- Critical study of identity formation in schools

Suggested Readings:
Bachelor of Science and Bachelor of Education
Rani Durgawati University
COURSES OF STUDIES
For
Four Year Integrated
B.Sc.B.Ed. (Eight Semesters) Course
SEVENTH SEMESTER

<table>
<thead>
<tr>
<th>Subject/Paper</th>
<th>Internal/External</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Ed. Part</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Pre-internship</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internship (100+100)</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>External Final Teaching (100+100)</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Post-internship</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Action Research (25+25)</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Concerns of Education coming from the field:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A Report</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Grand Total</td>
<td>600</td>
<td>600</td>
</tr>
</tbody>
</table>

Two school subjects will be Physical Science and Biological Science/ Mathematics

PRE-INTERNSHIP

Weeks: 03
Maximum Marks – 50

Min. Pass Mar. = 17
Internal – 50

Activities

A) Training into Micro-teaching Skills
 i. Skill of Introduction/Induction
 ii. Skill of Explanation
 iii. Skill of Illustration with examples
 iv. Skill of Reinforcement
 v. Skill of Stimulus variation

One Week
15 Marks
vi. Skill of Black Board Writing

B) Orientation into process skills and Content Analysis One Week 15 Marks
 i. Content Analysis of respective school subjects to identify concepts and processes
 ii. Process of Observation
 iii. Process of Classification
 iv. Process of Inference
 v. Process of Interpretation
 vi. Process of Measurement

C) Practice of making Unit and Lesson plans Three days 10 Marks
 i. Preparing Unit-plans (Two in each Pedagogy course)
 ii. Preparing Lesson Plans/learning situations (Two in each pedagogy course)

D) Evaluation Formats Three days 10 Marks
 i. Preparation of Blue Print (One in each pedagogy course)
 ii. Question Paper (One in each pedagogy course)
 iii. Orientation into Portfolios
 iv. Orientation into Rubrics

INTERNISHIP

Maximum Marks – 200 (100+100)
Min. Pass Marks – 66 (33+33)
Internat – 200

Activities:

- Lesson Delivery in the classrooms (40 in each pedagogy subject) 50+50 100
- Critical observation lesson (One in each pedagogy subject) 25+25 50
- Final Lessons (One in each pedagogy subject) 25+25 50
- Peer Observation and Reporting (Ten in each pedagogy subject) 10+10 20
- Preparation of Pedagogical Resources (In two pedagogy Subjects) 10+10 20
- Scholastic Achievement Test Record (One in each pedagogy subject) 20+20 40
- Case Study Record 20
External Final Teaching

Maximum Marks – 200 (100+100)
Min. Pass Marks – 66 (33+33)
External – 200

Activities:
➤ Lesson Delivery in the classrooms (One in each pedagogy subject) 75+75 150
➤ Viva Voce 50 50

Post Internship

Week: 02
Maximum Marks – 50
Min. Pass Marks – 17
Internal – 50
Post-Internship Viva-voce and Records of Internship 50

Action Research

Internship/
Maximum Marks – 50
Min. Pass Marks – 17
Internal – 50
Action Research during Internship and submitting Report in Post-Internship

Concerns of Education Coming from the Field: A Report
Internship/
Maximum Marks – 30
Min. Pass Marks – 17
Internal – 50
Concerns of Education Coming from the field- A Reflective Report
(Writing future concerns during Internship and submitting Report in Post-Internship: Credit on originality)
Bachelor of Science and Bachelor of Education
Rani Durgawati University
COURSES OF STUDIES
For
Four Year Integrated
B.Sc.B.Ed. (Eight Semesters) Course

EIGHTH SEMESTER

<table>
<thead>
<tr>
<th>Subject/Paper</th>
<th>Paper</th>
<th>Intern.</th>
<th>Total</th>
<th>Pds./week</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.A./B.Sc. Part:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foundation Course</td>
<td>40</td>
<td>10</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>Environmental Education</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective I + Practicum + Pro.</td>
<td>70+50</td>
<td>30</td>
<td>150</td>
<td>9</td>
</tr>
<tr>
<td>Elective II + Practicum + Pro.</td>
<td>70+50</td>
<td>30</td>
<td>150</td>
<td>9</td>
</tr>
<tr>
<td>Elective III + Practicum + Pro.</td>
<td>70+50</td>
<td>30</td>
<td>150</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>400</td>
<td>100</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>B.Ed. Part</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vision of Indian Education issues and Concerns</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>School Management & Leadership</td>
<td>40</td>
<td>10</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>80</td>
<td>20</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Grand Total</td>
<td>480</td>
<td>120</td>
<td>600</td>
<td></td>
</tr>
</tbody>
</table>

- Elective 1 – Physics/ Botany.
- Elective 2 – Chemistry.
- Elective 3 – Zoology/Mathematics.
(All electives will have one theory paper and external practical examination except Mathematics where there will be two theory papers and practicum which will be valued internally.)
<table>
<thead>
<tr>
<th>Semester Name</th>
<th>Paper</th>
<th>Marks</th>
<th>Paper Code</th>
<th>Name of Papers</th>
</tr>
</thead>
<tbody>
<tr>
<td>VII</td>
<td>Paper Theory-XIII (Select any one Paper)</td>
<td>35</td>
<td>M-8.1(a)</td>
<td>Elementary Number Theory</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M-8.1(b)</td>
<td>Dynamics of Rigid Bodies</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M-8.1(c)</td>
<td>Mathematical Statistics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M-8.1(d)</td>
<td>Topology, Tensor Arid</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M-8.1(e)</td>
<td>Riemannian Geometry</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Numerical Analysis and Language</td>
</tr>
<tr>
<td></td>
<td>Paper Theory-XIV (Select any one Paper)</td>
<td>35</td>
<td>M-8.2(a)</td>
<td>Hydrostatics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M-8.2(b)</td>
<td>Operation Research</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M-8.2(c)</td>
<td>Discrete Mathematics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M-8.2(d)</td>
<td>Differential Geometry</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M-8.2(e)</td>
<td>Probability Theory</td>
</tr>
<tr>
<td></td>
<td>Internal Test</td>
<td>30</td>
<td></td>
<td>Related to above Papers</td>
</tr>
<tr>
<td></td>
<td>Project, Practical/Dissertation</td>
<td>50</td>
<td></td>
<td>Project, Practical/Dissertation</td>
</tr>
</tbody>
</table>

B.Sc. Component:

Foundation Course: Environmental Education

Paper II

Contact Periods/week: 03

<table>
<thead>
<tr>
<th>Maximum Marks</th>
<th>Min. Pass Marks</th>
<th>Internal</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>13</td>
<td>10</td>
</tr>
</tbody>
</table>

Distribution of Marks

All five units are compulsory. Two questions to be set from each unit, one to be attempted.

Objectives:

1. To provide an understanding to the students about basic aspects of the environment and its concerns.
(ii) To generate awareness about the social issues of the environment.
(iii) To enable the students to analyse, evaluate and draw inferences about problems and concerns related to environment.
(iv) To create awareness about the legal framework for protection of environment and wildlife.

Unit I

Unit II
Introduction, types, characteristic features, structure and function of the following Ecosystem: Forest, Grassland, Desert ecosystem. Aquatic ecosystems (Ponds, streams, lakes, rivers, ocean, estuaries).

Unit III
Biodiversity and its conservation: Introduction, definition, genetic, species, and Ecosystem diversity. Biogeographical classification of India; Value of biodiversity, consumption and productive use; Social, ethical and aesthetic values.

Unit IV
Biodiversity at global, national and local levels; India as a mega-diversity nation; Hot spots of biodiversity; Threats to biodiversity: habitat loss, poaching of wildlife, man wildlife conflicts, endangered and endemic species of India; Conservation of biodiversity: In situ and ex situ conservation of biodiversity

Unit V
Environmental Pollution: Definition, cause, effects and control measures of - Air pollution, water pollution, marine pollution, noise pollution, thermal pollution and radioactive pollution. Nuclear hazards. Solid waste management: cause, effects and control measures of urban and industrial wastes; Role of an individual in prevention of pollution; Pollution case studies; Disaster management:
FIELD WORK

1. Visit to local area to document environmental assets – rivers, forests, grasslands, hills, and mountains.
2. Visit to local polluted site – Urban, rural, industrial and agricultural
3. Study of common plants, insects, birds.
4. Study of simple ecosystem-pond, river hill slopes, etc. (Field work equal to 5 lecture hours)

Suggested Readings

Scanned by CamScanner
Elective I – PHYSICS

Paper VII: Atomic, Molecular and Nuclear Physics

Contact Periods/week: 05 + 4 Practical

Maximum Marks – 70
Min. Pass Marks – 25
Internal – 30 (Theory 20 & Practical 10)
Practical/ Project – 50 (External)

Note – At least one question will be set from each unit. 20% of maximum marks will form simple numerical problems and another 20% would be for objective questions with a provision to provide reasoning. All questions will have 100 % internal choice

Objectives: After completion of this course the students will be able to

1. Understand the spectra of hydrogen and the fine structure of spectral lines.
2. Understand Raman Effect and its applications.
3. Understand various spectroscopic techniques.
4. Understand various efforts made by physicists to know about the constituents of the nucleus.
5. Understand nuclear forces and binding of nucleus.
6. Understand the use of nuclear accelerators and detectors.
7. Understand various types of elementary particles, forces of nature

Unit-1: Atomic Physics
Spectra of Hydrogen and alkali atoms, spectral terms, doublet fine structure, screening constants for alkali spectra for s, p, d and f states, selection rules.
Singlet and triplet fine structure in alkaline earth spectra, LS and JJ coupling, Fermi Golden rule.

Unit-2: Molecular Spectra
Discrete set of electronic energies of molecules, quantization of vibrational and rotational energies, determination of inter nuclear distance, pure rotational and rotational – vibrational spectra, dissociation limit for ground and other electronic states, transition rules for pure vibration and electronic vibration spectra.
Raman effect, Stokes and anti-Stokes lines, complementary character of Raman and infrared spectra, experimental arrangements for Raman spectroscopy, ideas about spectroscopic techniques.
Unit-3: Structure of Nucleus

Basic nuclear properties - size, binding energy, angular momentum parity, magnetic moment, semi-empirical mass formula and application, magnetic moment and non-central forces. Meson theory of nuclear forces, salient features of nuclear forces, liquid drop model & shell model of the nucleus - success and limitations.

Alpha decay, Geiger-Nuttal law, Fermi's theory of beta decay, violation of parity in beta decay, and continuous and discrete spectra, gamma decay and internal conversion.

Unit-4: Nuclear Detectors and Accelerators

Interaction of charged particles and neutrons with matter, working of nuclear detectors, GM counter, proportional counter and scintillation counter, cloud chamber, spark chamber, emulsion detector. Survey of particle accelerators, cyclotron, synchrocyclotron, betatron, bevatron.

Unit-5: Particle Physics and Nuclear Phenomena

Classification of elementary particles, anti particles and muons, and their interactions, conversion laws, quark structure of hadrons, field quanta of electro weak and strong interactions, the W-Z particles, conservation laws.

Q-value of nuclear reactions, nuclear fission and fusion, energy production in stars, nuclear reactors.

Suggested Readings

- Goyal, R.P., Unified Physics, Shivlal Agrawal and Co., Indore.
- Freedman and Young, University Physics, Addison-Wesley
- Sharma, R.C., Nuclear Physics, K. Nath and Co., Meerut.

Physics Practical List

1. To study the nuclear disintegration using GM counter
2. To determine the resistivity of given sample Ge/Si using four probe method

Projects: Innovative approach to experiments

Instructions for students

1. Choose an experiment you want to conduct in a project mode-get allotted.
2. Write its objectives to make it open ended.
3. Collect literature relevant to it.
4. Collect and sequence all materials for conducting it.
5. Formulate hypothesis.
6. Envisage process to attack problems and verify hypothesis.
7. Conduct experiments.
8. Tabulate observation for each objective separately.
9. Plot graphs for finding any relationships.
10. Infer from graphs.
11. Discuss reliability of result.
12. Make error analysis.
13. Write questions that need to be answered on the project.
14. Whether the stated objectives have been realized or not. If not what were the constraints (sources of error).
15. Number of consultation done with the teacher, experts and peer group about the project.
16. Write utility and scope of your investigation.
17. Provide references and acknowledgement.
18. Submit project by 15 march of each session.

Topics for suggestive projects (interdisciplinary projects are welcome)
1. communication electronics.
2. nano technology
3. superconductivity
4. projects based innovative experiments like half life simulations, galileo experiment, cart experiment, projectile motions, head on collision, mthorford scattering.
5. atmospheric physics
6. plasma physics
7. biophysics
8. design of power supply.

[Handwritten signatures]
Elective I – BOTANY

Paper VII: Ecology and Improvement of Plant Resources

Contact Periods/week: 35 + 4 Practical

Maximum Marks – 70
Min. Pass Marks = 33
Internal – 30 (Theory 20 & Practical 10)
Practical/ Project – 50 (External)

NOTE: Two questions will be set from each unit and students are required to attempt one question from each unit.

Objectives:

➢ To enable the student teacher to understand the plants in relation to their environment.
➢ To provide an understanding for the improvement of plants by different methods.

Unit I: Plants and environment:
Atmosphere (gaseous composition), water (properties of water cycle), light (global radiation, photo synthetically active radiation), temperature, soil (development, soil profiles, physicochemical properties) and biotic factors. Morphological anatomical and physiological responses of plants to water (hydrophytes and xerophytes), temperature (thermo periodicity) and vernalization, light (photoperiodism, heliophytes and sclrophytes) and salinity.

Unit II:
Population ecology
Community ecology
Growth curves, ecotypes and ecos.
Community characteristics, frequency, density, cover, Raunkiar’s life forms, biological spectrum; ecological succession.

Unit III: Ecosystems:
Structure, abiotic and biotic components; food chain, food web. Ecological pyramids, energy flow, biogeochemical cycles of carbon, nitrogen and phosphorus.

Unit IV
Biogeographically regions of India, vegetation types of India with special reference to Madhya Pradesh and Chhattisgarh, National Parks in M.P. and Chhattisgarh, endangered plant species and their conservation.

Unit V: Improvement of Plants:
Plant breeding, nature scope and methods of plant breeding.
breeding for disease resistance.
Vegetative propagation methods, micro propagation, grafting and their economic aspects.

PRACTICAL

Objective – To develop the skill of performing practical of ecology, collection of data, analysis of data and its interpretation.

Practical:
1. Frequency, density and abundance of plant their in grassland ecosystem.
2. Frequency, density and abundance of plant in pond ecosystem.
4. Determine pH of water from various sources.
5. Determine the pH of Soil.
6. Estimation of biomass (Dry weight/fresh weight) of plant species.
7. BOD/DOD of plant system.
8. Erosion studies of flower and Hybridization.
9. Grafting and Layering.

SCHEME OF EXAMINATION (Suggestive - Max. Marks: 25)
1. To conduct an Experiment 10
2. To analyse and interpret the given data 05
3. viva-voce 05
4. Practical Records 05

PROJECT (Internal)

Objective: To develop the skills of designing an experiment, collection of data, and its interpretation for making generalization/testing of hypothesis.

List of Suggestive Projects
1. Acquaintance with the local herbaceous flora and an ecological note about these.
2. Preparation of inventory of tree species of RIE Campus.
4. Erosion studies of physical and chemical attributes of soil samples from Shyamala Hills and their relevance to the vegetation.
5. Listing of ephemerals from Van Vihar.
6. Phytosociological study of vegetation of Shyamala Hills in terms of density, frequency, abundance of important species.
7. Preparation of Raunkiaer's frequency classes of an area.

SCHEME OF EXAMINATION (Suggestive - Max. Marks: 30)
1. Project proposal and presentation 5
2. Project work in lab/field 5
3. Project report 10
4. Viva-voce on the project 10

Suggested Readings
- Gunguly, A.K. and Kumar, N.C. Cytology, Genetics Plant Breeding and Organic Evolution Emkay Publications Delhi – 110051
- Singh B.D. 1997 Plant Breeding
- Gupta, S.K. 2000, Plant Breeding Agrobios Jodhpur

Elective II – CHEMISTRY

Paper VII

Contact Periods/week: 05 + 4 Practical

Maximum Marks – 70
Min. Pass Marks – 23

Internal – 30 (Theory 20 & Practical 10)
Practical/Project – 50 (External)

NOTE: Two questions will be set from each unit and students are required to attempt one question from each unit.

Objectives:

After completing this semester the students should be able to:

(i) Get a comparative idea of the concepts involved in classical mechanics and quantum mechanics.

(ii) Learn the origin of Schrödinger wave equation and its application in calculating the energy and wave functions of various atomic and molecular systems.
(iii) Appreciate to learn the quantum mechanical explanation of the concept of hybridization.

(iv) Assess the various interplay regions of electromagnetic radiations and their interaction with molecular rotational, vibrational and electronic energies.

(v) Get knowledge about NMR spectroscopy technique in elucidation of the structure of organic compounds and solve problems pertaining to elucidation of structures.

(vi) Utilize spectroscopic techniques in the elucidation of molecular structure.

(vii) Get acquaintance with the subject of photochemistry and make a comparative study about thermal and photochemical reactions.

(viii) Appreciate to learn different photo-physical processes responsible for some interesting phenomenon like fluorescence and phosphorescence.

Instructonal Strategy:

In dealing with quantum mechanics, the teachers should impress upon the students the role of mathematical modeling in transaction of concepts in physical sciences. The MO theory may be transacted with the help of computer technology. Alongwith theoretical classroom discussions, to effectively teach the spectroscopy ideas a visit to a nearby instrumental laboratory may be fruitful. The technique of open-ended learning may be encouraged in giving treatment to the subject of photochemistry. Students may be encouraged to take some project work on the study of properties associated with the substances as they effect molecular mass calculation and elucidation of structures. The idea of individual learning may be encouraged for some concepts of electrochemistry.

UNIT – I

Elementary Quantum Mechanics: Black-body radiation, Planck’s radiation law, photoelectric effect, heat capacity of solids, Bohr’s model of hydrogen atom (no derivation) and its defects, Compton effect. De Broglie Hypothesis, the Heisenberg’s uncertainty principle, Sinusoidal wave equation, Hamiltonian operator, Schrödinger wave equation and its importance, physical interpretation of the wave function, postulates of quantum mechanics, particle in a one dimensional box.

Molecular orbital theory, basic ideas-criteria for forming M.O. from A.O., construction of M.O.’s by LCAO-H2 + ion, calculation of energy levels from wave functions, physical picture of bonding and antibonding wave functions, concept of \(\square, \square^*, \square, \square^* \) orbitals and their
characteristics. Hybrid orbitals -sp, sp2, sp3-, calculation of coefficients of A.O.'s used in these hybrid orbitals.

Introduction to valence bond model of H2, comparison of M.O. and V.B. models.

UNIT – II

Vibrational Spectrum: Infrared spectrum: Energy levels of simple harmonic oscillator, selection rules, pure vibrational spectrum, intensity, determination of force constant and quantitative relation of force constant and bond energies, effect of anharmonic motion and isotope on the spectrum, idea of vibrational frequencies of different functions groups. Fingerprint region, IR spectra of simple organic compounds.

Raman spectrum: Concept of polarizability, pure rotational and pure vibrational Raman spectra of diatomic molecules, selection rules.

Qualitative description of σ, π and π M.O., their energy levels and the respective transitions. Application of UV-Visible absorption spectroscopy in structural determination-absorption law (Beer -Lambert law), molar absorptivity, types of electronic transition, effect of conjugation, chromophores & auxochromes, bathochromic, hypsochromic, hyperchromic & hypochromic shifts. UV – spectra of ene and enones. Woodward-Fischer rule.

UNIT – III

Spectroscopy: Nuclear magnetic resonance (NMR) spectroscopy.

Proton magnetic resonance (1H NMR) Spectroscopy, nuclear shielding and deshielding, chemical shift and molecular structure, spin-spin splitting and coupling constants, areas of signals, interpretation of PMR spectra of simple organic molecules such as ethyl bromide, ethanol, acetaldehyde, 1, 1', 2'-tribromoethane, ethyl acetate, toluene and acetophenone.

[Signatures]
Problems pertaining to the structure elucidation of simple organic compounds using UV, IR and PMR spectroscopic techniques.

UNIT - IV
Photo Chemistry: Interaction of radiation with matter, difference between thermal and photochemical processes. Laws of photochemistry: Grothus-Draper law, Stark-Einstein law, Jablonski diagram depicting various processes occurring in the excited state, qualitative description of fluorescence, phosphorescence, non-radiative processes (internal conversion, intersystem crossing), quantum yield, photosensitized reactions, energy transfer processes (simple examples).

UNIT - V

Organic Synthesis via Enoates: acidity of \(\alpha\)-hydrogens, alkylation of diethyl malonate and ethyl acetacetate. Synthesis of ethyl acetacetate, the Claisen Alkylation of 1, 3-dithiines. Alkylation and acylation of enamines.

Suggested Readings:
1. Chandra, A.K., Quantum Chemistry TMH Publication
2. , Levine, I.N., Quantum Chemistry, Prentice Hall of India Pvt. Ltd.
3. Banwell, C.N., Spectroscopy, TMH Publication
4. Sharma, Y.K., Elementary Organic Spectroscopy, S. Chand & Company
5. Glastone, S., Theoretical Chemistry, East-West Publication
6. Puri, Sharma & Pathania, Physical Chemistry, Sobani Lal Nagin Chand & Company
9. Rohtagi Mukherjee, K.K., Photochemistry, Wiley Eastern Ltd.
Elective III – ZOOLOGY

Paper VII: ECOLOGY, ETHOLOGY AND APPLIED ZOOLOGY

Contact Periods/week: 95 + 4 Practical
Maximum Marks – 70
Min. Pass Marks – 23
Internal – 30 (Theory 20 & Practical 10)
Practical/ Project – 50 (External)

NOTE: Two questions will be set from each unit and students are required to attempt one question from each unit.

OBJECTIVES: To develop skill of analysis of behavioural patterns of animals and their place in the ecosystem and to utilize the various biotic components in a practical manner for economic purposes.

UNIT-1

1. Concept and ideas of ecology; scope ecology, autecology, synecology, habitat and ecological niche, habitat ecology – aquatic and terrestrial.
2. Concept of ecosystem, different types of ecosystem, structure and function of ecosystem, some major ecosystems, energy flow in an ecosystem
3. Food chains, food webs and ecological pyramids
4. Population Ecology – Definition and characters of population, population density, natality, mortality, age distribution, biotic potential of population, population dispersal
5. Biogeochemical cycles: patterns and basic types of biogeochemical cycles, cycling of pattern in ecosystem like carbon, phosphorus, nitrogen cycle.

UNIT-2

1. Community Ecology: Concept of biotic community, community structure, analytical and synthetic characters of community
2. Ecological Succession: Causes, basic types, general process
3. Biodiversity Conservation: Definition, types, value and importance
4. Hotspots of biodiversity, Megabiodiversity nations, conservation of biodiversity (Ex situ and in situ conservation strategies)
5. Forest Resource: types and importance of forest: Forest resources of India. Deforestation effects of Deforestation, Management and conservation of forest
Unit-3
2. Water Pollution- Definition, sources and effects. Noise Pollution- sources and effects. Pesticides- Definition, Categories, general effects. Heavy metals- Definition, examples, general effects.
3. Basic idea about acid rain, green house gases and their effects; ozone hole, eutrophication, bioaccumulation, biomagnifications.
4. Toxicology- Basic concepts, Types of Toxicants, Toxicity testing, LC 50, LD 50, acute and chronic toxicity.
5. Pesticide and their toxicological effects, dose-response relationship categories of toxic effects.

Unit-4
2. Patterns of behavior (taxes, reflexes, instinct and motivation)
3. Biohythms; learning and memory
4. Migration of fishes and birds, social behaviour in animals.
5. Courtship and reproductive Behaviour.

Unit-5
1. Aquaculture and pisciculture
2. Sericulture.
3. Apiculture.
4. Lac-culture.
5. Control of insect pests (Biological and Chemical)

PRACTICAL
Objective – To make students develop skills of maintenance of components of ecosystem in an artificial condition and to take initiatives to analyse the environment and organism to understanding the practical aspects of life.

Mandatory Class Work Experiments:
1. Study of museum specimen of fresh water edible fishes, honey bee and prawn.
2. Study of pH of water and soil.
4. Study of plankton-Euglena, Paramecium, Cyclops, Mysis, Daphnia and other Planktons in water.
5. Analysis of DO, COD, BOD in water samples.
6. Analyzes of chloride, lead, carbonate, zinc ions etc. in water samples.
7. Study of biodiversity through quadrat method.
9. Toxicity testing through LD50 and LC50 method.
10. Experimentation on learned behaviors of animals.
 (eg: light sensitivity in earthworms, olfactory senses in Drosophila sp.)

Individual Project Submission:

Aim: to develop the skill of data collection, hypothesis and generalization and analysis, interpretation of data (related to syllabus of all semesters).

SCHEME OF EXAMINATION (Suggestive)

1. Experiment 1 (Ecology)
2. Experiment 2 (animal behaviour/Toxicity testing)
3. Spotting
4. Study of planktons
5. Practical Records
6. Project submission and viva-voce 25

Total = 50 Marks

Suggestive books:

5. Introduction to Environmental science, Y Arjanceyulu. B.S Publishing Com. Ltd.
11. Elements of Ecology, Clerke, John, Wiley & sons
12. Environmental Studies, A.K. De, Age International Pvt., Ltd
14. Aquaculture
15. A Manual of fresh water aquaculture
16. Aquaculture
17. Tropical Fish Farming
18. Fishes of India
19. Introduction of Fishes
20. Applied Entomology
21. Pest Control and its ecology
22. Laboratory Techniques in Modern Biology

Elective III – Mathematics
Contact Periods/week: 05 + 4 Practicum
Maximum Marks – 35+35=70
Min. Pass Marks – 23
Internal – 50
Practicum – 50 (Internal)

(One each to opt. out of M-8.1 and M-8.2)

M – 8.1 (a) ELEMENTARY NUMBER THEORY

NOTE: Two questions will be set from each unit with Internal choice.

Objectives: To develop the understanding of Elementary Number Theory

Unit — I Division algorithm, Congruences and modular arithmetic, G.C.D.
Unit — II The Diophantine equation, ax + by = c, Chinese remainder theorem, Euler phi function, Primes and factorization, Fermat’s and Wilson’s theorem

Unit — III The order of integer modulo n, Primitive roots for primes, Composite number having primitive roots, Quadratic law of reciprocity, and its application.

[Signatures]

Scanned by CamScanner
Unit — IV Arithmetical functions. Möbius inversion formula. Numbers of special form—
perfect numbers, Mersenne primes, Fermat numbers.

Unit — V The Diophantine equations \(x^2 + y^2 = 2z, x^4 + y^4 = z^2\). Farey sequences.

Content as in

David M. Burton : Elementary Number theory Wm C.Brown Publishers

M — 8.1(b) DYNAMICS OF RIGID BODIES

NOTE: Two questions will be set from each unit with internal choice.

Unit — I Moments and products of inertia. The momental ellipsoid. Equipotential
Systems. Principal axes.

Unit — II D'Alembert's principle. The general equations of motion of a rigid body.
Motion of the center of inertia and motion relative to the center of inertia.

Unit — III Motion about a fixed axis. The compound pendulum. Center of percussion.

Unit — IV Motion of a rigid body in two dimensions under finite and impulsive forces.

Unit — V Conservation of Momentum and Energy. Lagrange's equations. Initial Motion.
Content as in : S.L. Loney: An Elementary Treatise on the Dynamics of a
particle and rigid Bodies Cambridge Univ. Press

M — 8.11 MATHEMATICAL STATISTICS

NOTE: Two questions will be set from each unit with internal choice.

Unit — I Probability: Independent and dependent events, conditional probability.
Addition and multiplication theorems, Bayes theorem, Random variables —
Discrete and continuous variates and their distributions.

Unit — II Binomial, Poisson, rectangular, exponential and normal distributions, their
derivations, properties and uses.

Unit — III Methods of least squares, curve fitting, co-relation and regression (two variates
only)

Unit — IV Partial and multiple co-relation, regression (upto three variates only).

Unit — V Sampling, Null and Alternate hypotheses, errors of first and second kind, level
of significance, critical region, one-tailed and two — tailed tests. Test of
significance based on Chi-square (goodness of fit and test of independence)

'\(t\)' and 'F' (to test equality of several means) statistics

Content as in

S.C. Gupta, V.K. Kapoor "Fundamentals of Mathematical statistics"

[Handwritten notes]
M — 8.1(d) TOPOLOGY, TENSOR AND RIEMANNIAN GEOMETRY

NOTE: Two questions will be set from each unit with internal choice

Unit -1 Topology: Topological spaces, Comparison of topologies, close set, Neighborhood, Basis for a topology, limit points, Adherent points and derived set, interior, exterior and frontier of a set.

Unit- 2 Continuity in topological space, compact space, Heine-Borel theorem, connected space.

Unit- 3 TENSOR ALGEBRA: Space of N-dimension, Subspace, Curve, Summation convention, Kronecker delta, Transformation of coordinates, Summation of convention, Indicial (or range) convention, Dummy suffix, Contravariant and covariant vectors (Tensor of first order), Tensor of second order (or rank two), Tensor of higher rank (or higher order). Invariant of Scalar. Addition ad subtraction of tensors. Multiplication of Tensor, Contraction, Inner Product, Symmetric Tensor, Skew-symmetric Tensor, Quotient law, Conjugate (or Reciprocal) symmetric tensor, Relative tensor, Tensor field, Christoffel’s Index

Unit- 4 Riemannian Geometry: Riemannian metric, Magnitude of a Vectors, Length of a Curve, Unit Tangent Vector, Associated Vectors, Angle between two vectors, Conjugate of Reciprocal Symmetric Tensor, Law of Covariant differentiation of Tensor, Divergence of a Tensor, Curl of a Tensor, Ricci’s Theorem, Curvature Tensor or Riemannian Christoffel Tensor, Ricci Identity, Bianchi’s Identity, Ricci’s Tensor, Riemannian christoffel’s Tensor of first kind or Associative Curvature tensor or Covariant Curvature tensor,

Unit- 5 Riemannian manifold or Riemannian space, Curvature of a curve, Derived vectors, Geodesics and related theorems, Geodesic mapping. Gradient, Weyl’s Curvature tensor or Projective Curvature Tensor, Geodesic Coordinate, Riemannian Coordinates, Riemannian curvature, Einstein space, Flate space, Schur’s theorem, Weyl’s Tensor, Fundamental theorem of Riemannian geometry.

Content as in:

G.F. Simons — Topology and Modern analysis
J.N. Sharma — Topology
James R. Munkres — Topology — A First Course

M — 8.1(e) NUMERICAL ANALYSIS AND ‘C’ LANGUAGE

NOTE: Two questions will be set from each unit with internal choice

[Signature]
Unit — I Programme's model of a computer, Algorithms, Flow Chart, Data Types, Arithmetic and input/output instruction, overview of C++ programming style. Constant, variables, and data type, operations and expressions, Managing Input and Output operations, Decision making and Branching, Decision making and Looping, Arrays, Handling of Character and strings, File formatting.

Unit — III Numerical Quadrature: Newton – Cote’s Formula, Gauss Quadrature Formula, Chebyshev’s Polynomials.

Content as in :
S.S. Sastry: Introductory Methods of Numerical Analysis

M — 8.2 (a) HYDROSTATICS

NOTE : Two questions will be set from each unit with Internal choice

Unit — I Pressure equation, Condition of equilibrium, Lines of force, Homogeneous and heterogeneous fluids, Elastic fluids.

Unit — II Surface of Equal pressure, Fluid at rest under action of gravity, Rotating fluids.

Unit — III Fluid pressure on plane surfaces, Centre of pressure, Resultant pressure on curved surfaces.

Unit — IV Equilibrium of floating bodies, Curves of buoyancy, Surface of buoyancy, Stability of equilibrium of floating bodies, Meta center, Work done in producing a displacement, Vessel containing liquid.

Signed: G. Guleti
Signed: B. Alvi

Content as in : W.H.Besant and A.S. Ramsey : A treatise on Hydromechanics Part I ELBS.

M — 8.2 (b) OPERATION RESEARCH

NOTE: Two questions will be set from each unit with internal choice

Unit — II Some basic properties of convex sets, convex functions and concave functions. Theory and application of Simplex method of solution of a linear programming problem.

Unit — III The transportation and Assignment problems.

Unit — V Game theory — 2 persons zero sum games

Content as in : Operations Research — Man Mohan Singh

Operations Research — S.D. Sharma

M — 8.2 I DISCRETE MATHEMATICS

NOTE: Two questions will be set from each unit with internal choice

Unit — IV Planar Graphs, Trees.

Homogenous solutions, Particular solutions Total solution. Solution by the method of Generating Functions.

Content as in:
1. C.L. Liu - Elements of Discrete Mathematics
 Discrete Mathematics and its applications.

M — 8.2 (d) DIFFERENTIAL GEOMETRY

NOTE: Two questions will be set from each unit with Internal choice

Unit — II Global curve theory — Rotation index, convex curves, Isoperimetric, inequality, four vertex theorem.

Unit — III Local theory of surfaces — Parametric patches on surface, First fundamental form and arc length, Normal curvature, Geodesic curvature and Gauss formulae, shape operator LP of a surface at a point, Vector field along a curve, second and third fundamental forms of a surface, Weingarten map.

Unit — IV Principal curvatures, Gaussian Curvature, Mean and normal curvatures, Gauss theorem, Isometry groups and the fundamental existence theorems for surfaces.

Unit — V Global theory of surfaces — Geodesic coordinate patches, Gauss-Bonnet formulae, Euler characteristic of a surface, Index of a vector field, spaces of constant curvature.

Content as in:
T.J. Willmore: An introduction to Differential and Riemann Geometry.

M — 8.2 (e) PROBABILITY THEORY

NOTE: Two questions will be set from each unit with internal choice

Unit — I Notation of probability, Random experiment, Sample space, axiom of probability, elementary properties of probability, equally likely outcomes, conditional probability, Bayes theorem, Independence, Geometric Probability.

Unit — II Random variables. Concept, Cumulative distribution function, discrete and continuous random variables, expectations, mean, variance, moment generating function.

Unit — III Discrete random variable, Bernoulli random variable, binomial random variable, geometric random variable, Poisson random variable.
Unit — IV Continuous random variable. Uniform random variable. Exponential random variable. Gamma random variable. normal random variable.

Unit — V Bivariate random variable. Joint distribution. joint and conditional distribution. the correlation coefficient.

Content as in

M — 8.3 Project, Practical / Dissertation in Mathematics

List of Activities:
- Project, Practical / Dissertation related to Mathematics
- Mathematics seminar.

Education Component:

Vision of Indian Education: Issues & Concerns

Contact Periods/week: 03

Maximum Marks: 40
Min. Pass Marks: 15
Internal: 10

Objectives:
After the completion of the course Pupil-teachers will:

➢ Appreciate Constitutional ideals and values and reflect critically on the role of education in realizing those ideals
➢ Identify and Internalize Values of New Social order envisioned and enshrined in Indian Constitution
➢ Understand the diverse and complex nature of Indian Society
➢ Appreciate that the Indian nation is in the process of making
➢ Reflect on inherent contradictions present in India
➢ Develop critical faculty in realizing and interpreting the nature of Indian Schooling
➢ Develop perspective on issues and concerns of Indian schooling
➢ Become sensitive towards child rights and classroom practices

Unit-I: Understanding India: Indian Constitution: Concern for New Social Order
- Constitution and Preamble: National Ideals
 - Democracy,
- Equality,
- Liberty,
- Secularism, and
- Social Justice.
- Constitutional provisions on education that reflect these ideals: Implicit concerns and issues
 - India as a Society: Socio-economic, cultural, linguistic and regional framework
 - India as an evolving Nation state: Vision, Nature and Salient Features
 - Democratic polity,
 - Federal structure.
 - Implications to Educational arrangements and responsibility
 - India as Developing Economy: Salient features and contradictions
 - Development and Displacement,
 - Development and environmental degradation,
 - Growing incomes and widening inequalities.
 - Facets/sectors of Indian economy: Agriculture, Industrial and Service
 - India as Knowledge economy
 - Implications to education

Unit-II: Education as Fundamental Right: Practices of Indian Schooling
 - Rights of Girl Child
 - Education as a Fundamental Right of Children
 - Universalisation of School Education
 - Equalization of Educational Opportunities
 - Problematization of Indian schooling in understanding the apparent contradictions/
 - Paradoxes of universality and equality;
 - Private-public schools
 - Urban-rural schools
 - Centre-state schools
 - Many other forms of in-equalities in Indian Schooling
 - Schooling and Access: Physical, Epistemological, and Cultural Access
 - Issue of enrollment, retention and success: Sociological analysis
Unit III Secondary Education: Status, Issues and Concerns
- Concept of Secondary Education
- Secondary School: its linkages with primary and higher secondary stages of education
- Aims of Secondary Education with special reference to Secondary Education Commission 1954
- Universalization of Secondary Education: status and issues
 - Quantitative Expansion
 - Qualitative Consolidation
 - Equity Perspective—A Sociological Understanding
 - Skill development and Vocationalization
 - Privatization

Unit IV: Guidance and Counseling
- Guidance—concept, need and principles
- Counseling concept, need and principles
- Guidance-Types- Educational, Vocational, and personal
- Educational guidance—nature, scope and approaches
- Vocational guidance—nature, scope and approaches
- Personal guidance—nature, scope and approaches
- Role of teacher in Guidance and Counseling.

Transactional Modes:
The transactional/construction modes of the course work may consist of:
- Lecture-cum discussions.
- Extended reading of certain required portions from Indian constitution and UNO conventions on Human Right and Child Rights.
- Observational studies.
- Analysis of education data.

Practicum on Forms of Inequalities and their reflection in Education—A critical study
(To situate and understand contradictions/paradoxes of economy a Case study/project work on Big Dams or SEZ and any other pressing economic issues may be undertaken.) (Critical study of alternative schooling in the light of education as a fundamental right of every child)

Suggested Readings:

School Management & Leadership

Contact Periods/week: 03

Maximum Marks – 40
Min. Pass Marks – 24
Internal – 16

Objectives:

After completing this paper, student-teachers will be able:

- To develop understanding about the basic concepts and process of school management.
- To understand different components of school management.
- To realize the multifaceted role of a teacher/head teacher.
- To develop the understanding about different school managements in India.
- To develop understanding about the role of different agencies in school management.
- To understand and appreciate the process of becoming an effective teacher.
- To understand the role of individuals as followers and leaders within organization.
- To critically examine the core and contemporary leadership theories relevant to school practice and settings.
To sensitize the students about new changes and challenges in leadership of institutions.
To develop capacities for being efficient and effective educational leaders.
To enable them to recognize the importance of management of resources and effective use of ICT in the context of school management.

Course Content:

Unit I: School management and its Components
1.1 Meaning, scope and process of school management.
1.2 Characteristics of Successful School Management.
1.3 Role of the Head master, Teacher and students
1.4 Managing internal organization: Curricular and co-curricular activities.

Unit II: School as an Organization
2.1 School Organization: Meaning, Aims and Objectives
2.2 Resource Requirements of School. i.e., Physical, Human and Financial Resources.
2.3 Schools under Different Managements –
 i) Government - Central, State and Local Bodies.
 ii) Private – Aided and Unaided.
2.4 Study of Specific Managements –
 i) Residential Schools Run by Social Welfare Corporations
 ii) Navodaya Vidyalayas/ Kendriya Vidyalayas / Satnik Schools /Railway Schools and Public Undertaking
 iii) National / State Open Schools

UNIT III: School Leadership
3.1 Meaning and Nature of leadership
3.2 Theories of Leadership
3.3 Leadership traits: Responsible, self-disciplined, innovative, imaginative, visionary
3.4 Leadership skills: Decision making, Planning, Coordinating, Communicating, Evaluating and Feed Back
3.5 Styles of Leadership: Autocratic, Democratic and Laissez-faire

UNIT IV: Dimensions of leaderships: Challenges and Perspectives
4.1 Responsibilities of leaders: Supervision as leadership, Leadership for the learning community, Leading and managing educational change and improvement
4.2 Obstacles to leadership: Resources and priorities, political pressure, social pressure, and personal antagonism

4.3 Issues of diversity in educational organizations, including issues related to gender and multiculturalism

4.4 ICT-A Tool for Resource Management

Sessional work (Any One)

- Study of leadership quality of school administrator/Head of the institution.
- Each student will frame an ideal school timetable.
- Students in group of 4 to 5 will prepare outline of curricular and co-curricular activities in school.
- Write an essay on application of ICT in school management, obstacles to leadership and managing teaching-learning.

Suggested Readings:

